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Introduction

Topology is the study of the properties of spaces independent of continuous de-
formations. This is a rich field of study which often makes use of tools from
other branches of mathematics. Of particular note for this project are the fields
of algebraic topology and category theory. Algebraic topology is the intersection
of its two eponymous fields, and it is useful for developing methods to perform
computations which would otherwise be impossible. One important concept in
algebraic topology is the computation of fundamental groups. This includes
finding the fundamental group of an arbitrary space, and finding a space with
an arbitrary fundamental group. Category theory, on the other hand, is a field
which has grown out of topology and which studies the basic fundamental struc-
tures of mathematics. It is useful for generalizing concepts between different
branches of mathematics, and translating between them.

The goal of this paper is to demonstrate that for every finitely presented
group G, there is some space X which has fundamental group G. To show this,
we will give some background in topology, free groups, and basic category theory.
With these tools developed, we will present and make use of Van Kampen’s
theorem, a powerful method of computing fundamental groups. Together, these
will give us the necessary tools to construct a space with a fundamental group
isomorphic to an arbitrary finitely presented group.
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Topology

We do not assume any background in Topology, so we will quickly give the
necessary definitions.

Basic Definitions

Definition. A topological space is a set X equipped with a collection T of
subsets of X, called the topology, obeying the following properties:

• ∅, X ∈ T ,

• T is closed under arbitrary unions,

• T is closed under finite intersections.

If a set U ⊆ X is in T we call it open.

Definition. A map f : X → Y between topological spaces is called continuous
if f−1(V ) is open in X for every open set V of Y .

Remark. A common example of a topological space is a metric space, a set
equipped with a distance function. In a metric space, the open sets are unions
of open balls.

Definition. A topological space X is path-connected if, for every x, y ∈ X,
there exists a continuous function f : [0, 1]→ X with f(0) = x and f(1) = y.

The Fundamental Group

The fundamental group is a complex concept which might be the subject of a
large portion of a beginning class in algebraic topology. We attempt to present
the concept here extremely quickly.

Definition. Let X be a topological space and f, g : [0, 1]→ X two paths with
f(0) = g(0) = x0 and f(1) = g(1) = x1. f and g are path homotopic if there
exists a continuous map

H : [0, 1]× [0, 1]→ X

satisfying H(s, 0) = f(s), H(s, 1) = g(s), H(0, t) = x0, and H(1, t) = x1. H is
called a homotopy between f and g.

Lemma. We can define a relation f ' g if f is path homotopic to g. This is
an equivalence relation. We denote the equivalence class of f under this relation
by [f ].

This notion of path homotopies is extremely important in algebraic topol-
ogy and merits further discussion. As a brief intuition, you can think of the
homotopy H as smoothly deforming f into g. To support this intuition, for
each t ∈ [0, 1] we can define ft(s) = H(s, t). For a less rigorous intuition, you
can think of this equivalence relation as stating “two paths are the same if I can
squiggle one into the other” (while keeping the endpoints fixed).
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Definition. If f and g are paths in X with f(1) = g(0), we define the concate-
nation of f with g by

(f ∗ g)(s) =

{
f(2s) 0 ≤ s ≤ 1

2

g(2s− 1) 1
2 ≤ s ≤ 1.

Intuitively, you can think of this as going first through f with twice the speed,
then through g with twice the speed.

Now we have the tools to construct the fundamental group. Let (X,x0) be
a topological space with a specified basepoint x0. The members of our group
are homotopy classes of loops f in X, i.e. functions f with f(0) = f(1) = x0.
We define a group operation ∗ by [f ] ∗ [g] = [f ∗ g]. We call this group the
fundamental group, denoted by π1(X,x0). The identity of this group is the
trivial loop, with the constant map to x0 as a representative. The inverse of [f ]
is [f̄ ], where

f̄(s) = f(1− s).

You can think of this as f being traversed backwards, so f ∗ f̄ is path
homotopic to a constant loop. Associativity of π1(X,x0) also holds. Even
though it is usually not the case that (f ∗ g) ∗ h = f ∗ (g ∗ h), a homotopy can
be constructed between them.

Remark. In a path-connected space X, the fundamental group of X does not
depend on the basepoint x0. In this case, π1(X,x0) is sometimes written as
simply π1(X).

Now we will give some examples of fundamental groups of common spaces.
Consider R with the standard topology with basepoint of 0, and let f : [0, 1]→ R
be a path. Then we have a homotopy between f and a constant map, given by

H(s, t) = (1− t)f(s).

Therefore, π1(R, 0) is the trivial group (a group with one element). As a more
complicated example, consider the circle S1, represented as the unit circle sitting
in the complex plane. While the construction of the fundamental group is
somewhat long, we can give a heuristic argument. For each integer n, define a
map fn : [0, 1]→ S1 by

fn(s) = e2πins.

so the map fn loops around the circle n times. It can be shown that every loop
f is homotopic to fn for some n. Further, it can also be shown that if n 6= m,
then fn 6' fm.

Attaching Spaces

The final topological idea we will discuss is that of attaching spaces, particularly
attaching disks to spaces. We denote the closed disk as D2. We begin with
a space X we would like to attach a disk to, and define an attaching map
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f : S1 → X. Then, we define an equivalence relation x ∼ f(x) for x ∈ S1 ⊂ D2.
Note that if the map f is not injective, this equivalence relation will identify
different points of S1 together. The space X ′ is the disjoint union of X with
D2 modulo this equivalence relation.

As an example of this, if we think of S1 as the unit circle in R2, we can let
f be the inclusion of S1 into R2. The resultant space will look like R2 with a
hemisphere protruding from it.

As with many of the concepts we discuss here, we can easily generalize this
to higher dimensions. In general, the boundary of the n-dimensional disk Dn

is the n − 1 dimensional sphere Sn−1, so we can attach this disk to a space X
with a map Sn−1 → X in the same way as before. It also makes sense to attach
an interval in this way, by defining a map from the two end points to a space.
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Figure 1: S1 ∧ S1

Free Groups

Free groups are one area in which algebraic insights can best achieved through
topological methods. There are several common questions one might ask about
groups, such as what subgroups it has, or how to tell what elements are in a
subgroup, which are best answered using the theory of covering spaces and lifts.

To illustrate this, we will construct the free group on 2 variables as the
fundamental group of the space S1 ∧ S1.

Fundamental Group of S1 ∧ S1

First, we will introduce the concept of wedge sums. Let X and Y be topological
spaces with basepoints x and y, respectively. The wedge sum X ∧ Y is the
disjoint union of X with Y , modulo the relation x ' y. The main example we’ll
be dealing with is S1 ∧ S1, which looks like the numeral 8. This is shown in
Figure 1. We can generalize this to define “The Rose of n petals” Rn =

∧n
j=1 S

1,
by identifying one point from each of the n circles.

Now we can consider the fundamental group of S1∧S1. Chose a direction to
traverse around the left circle, and label that path a. Do the same for the right
circle, and label that path b. We’ll label the paths in the opposite directions by
ā and b̄, respectively. We’ll think of these labels as loops (or homotopy classes of
loops) in S1∩S1. If we denote the trivial loop by e we can make the observation
that aā ' e ' āa; and likewise for b.

In our discussion of the fundamental group of S1 we made the claim that
every loop in S1 was path homotopic to a specific sort of loop corresponding
to an integer; we’ll make a similar claim here. Let us define a class of loops
w : [0, 1]→ S1 ∧ S1 by

w = x1x2 . . . xk.

such that each xi ∈ {a, b, ā, b̄}, and xi 6= x̄i+1. The loop is defined by first going
around x1, then x2, et cetera. We claim that every nontrivial loop is of this
form. As with the case of S1, we won’t spend time justifying this claim1. Now
that we have a description of the elements of the group, which we refer to as
reduced words, we need to give the group an operation that coincides with the
concatenation of loops and make sure it satisfies the group axioms. We’ll call
the identity of this group the “empty word.”

1If you are a student wanting to learn this topic, the texts by Munkres and Hatcher in the
references cover this fairly well. Also, this is the topic of a large portion of Math 5520, the
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The operation for this group will also be a concatenation. If w1 = x1 . . . xk
and w2 = y1 . . . y`, then we let w1 ·w2 = x1 . . . , xky1 . . . y`. There is a potential
problem here, namely if xk = ȳ1, then the concatenation is not reduced. The
solution is simple, we just remove xky1 from our expression and leave it as
x1 . . . xk−1y2 . . . y`. If xk−1 = ȳ2 we repeat the process, which will terminate in
finite steps. After this reduction process we will be left with a “reduced word,”
making this a well-defined binary operation. The inverse of w = x1 . . . xk is
w̄ = x̄k . . . x̄2x̄1. Associativity is much harder to show using words and this
reductive process, so we appeal to the fact that this group is the fundamental
group of S1 × S1, and that the concatenation operation on loops is associative
(up to a path homotopy). This group is the free group on 2 letters,2 and is
denoted by F2.

There’s nothing particularly special about the fact that two circles were used
here. In general, the fundamental group of the rose with n petals Rn is the free
group on n letters Fn. We will prove this fact later in the paper.

More Information on Free Groups

Earlier we alluded to questions of subgroups of free groups and when we can
determine their members; we would be remiss to entirely neglect discussion of
these things. We have not quite developed the topological methods necessary
to derive these results, as they involve “folding” of graphs corresponding to
subgroups3. The first fact we note is that every (nontrivial) subgroup of a free
group is free. For a subgroup generated by a single element w, this is easy to
see, since wk 6= 1 for all nonzero integers k.

Free groups have the following universal property. If F is the free group
generated by a set S, and G is any group, then any function from S to G
induces a unique homomorphism from F to G. This gives some motivation for
the name “free,” since you are free to send the generators wherever you want
and still have a homomorphism. You might think of it as analogous to Z in
rings, as Z has a unique ring homomorphism to any ring R. This seems much
more restrictive than the property of free groups, which is true, but it is also true
that ring homomorphisms satisfy much more stringent conditions than group
homomorphisms.

Group Presentations and Free Products

One common way to represent certain groups is via a presentation. A presen-
tation is a set of generators of a group, together with the relations which they
satisfy. We write it in the form G = 〈S|R〉 where S is the set of generators and

second in the undergraduate topology sequence.
2You may also see this referred to as a free group on 2 generators. We use the term letters

here because it fits in better with the description of elements as “words.”
3See Mladen Bestvina’s notes on this topic: Folding graphs and applications, d’après

Stallings. In Fall 2021 he is teaching Math 4800, focusing on Geometric Group Theory,
and will discuss this sort of thing.
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R is the set of relations. A group is finitely presented if both S and R are
finite.

It is common practice for the relations to be written as members which are
equal to the identity, or to each other, e.g. 〈x, y|xy = yx〉. Note that if we have
a relation written by an equality of non-identity elements, we could represent it
by finitely many relations of equalities of identity elements. It will be useful for
us to mainly consider relations as elements equal to the identity. We now give
some examples of group presentations.

• The free group on n letters is presented by 〈x1, . . . , xn|∅〉.

• The cyclic group of order n, Cn, is presented by 〈x|xn〉.

• The dihedral group Dn is presented by 〈x, r|xn, r2, x−1rxr〉.

• The direct product Z× Z is presented by 〈x, y|x−1y−1xy〉.

• The Klein 4 Group is presented by 〈x, y|x2, y2, (xy)2〉

Note that many common groups are not finitely presented. For instance
(R,+) is not, nor is any group which is not finitely generated. There are groups
which are finitely generated but not finitely presented, but examples of such
groups are convoluted so they are omitted here.

Now we discuss free products of groups. Informally, elements of the free
product of G with H can be thought of as formal words where the letters are
elements of G and H. In a free group, there was a reduction process anytime a
letter was preceded or succeeded by its inverse, here there are reductions given
by the relations of elements of G and H.

More formally, let G be presented by 〈SG|RG〉 and H by 〈SH |RH〉. Assume
that SG and SH are disjoint. Then the free product G ∗ H is presented by
〈SG ∪ SH |RG ∪RH〉.

There aren’t many interesting examples of free products, as it’s an operation
that just takes two groups and puts them together, assuming no relationship
between them. But, there are some interesting examples with free groups.

• Consider Z ∗ Z. We could present Z by 〈a|∅〉 or 〈b|∅〉. In this way, we
could present Z ∗ Z by 〈a, b|∅〉. Thus Z ∗ Z ∼= F2.

• Let Fm and Fn be free groups on m,n letters, respectively. Write their
presentations as 〈x1, . . . , xm|∅〉 and 〈y1, . . . yn|∅〉. Then Fm ∗ Fn is pre-
sented by 〈x1, . . . , xm, y1, . . . , yn|∅〉, so Fm ∗ Fn ∼= Fm+n.

• For a non-free group example, take C2 ∗ C2, where a and b are their
respective generators. C2 ∗ C2 is presented by 〈a, b|a2, b2〉, and elements
are just words in a and b where no letter follows itself. As in free groups,
the operation is concatenation followed by the reduction process induced
by the relations.
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A Very Brief Exposition of Category Theory

Introduction

Before diving headfirst into category theory, we should first establish why we are
using it. Category theory got its start in algebraic topology, which wikipedia
describes as ”... a branch of mathematics that uses tools from abstract algebra
to study topological space”. It is worth noting that there are several algebraic
results that may be proved using tools from topology; the relationship goes
both ways. Several examples of this interplay have showed up in our class, such
as Riemann surfaces, and the proof that C is algebraically closed. In fact, we
have also proved one of the most fundamental results of category theory, the
Yoneda Lemma, for unital commutative rings. The categories that we are pri-
marily concerned with in this paper are Top, the category of topological spaces
and continuous maps; Group, the category of groups and homomorphisms; and
BG, the category consisting of a single object whose morphisms form the group
G with the operation of composition. We will give examples involving several
other categories as well, though they will use for the main result we are striving
towards.

The utility of category theory is that it generalizes all of mathematics in
terms of categories, and in doing so provides a natural way to carry results
from one area (or category) of math to another. This is much more power-
ful than it may appear at first glance; category theory goes far further than
just moving structures and theorems from one place to another. By describing
mathematical concepts in terms that are divorced from the trappings of the
objects involved, category theory standardizes methods of proof and provides
a perspective in which seemingly different structures laying in distinct fields of
study may be viewed as the same construction. Here, we provide an extremely
condensed introduction to category theory to assist us in understanding Van
Kampen’s theorem. In doing so, we hope to provide an accessible introduction
to the remarkable power of categorical thinking. One of the main references for
categorical concepts in this paper is Emily Riehl’s Category Theory in Context4;
we will follow it closely in our definition of categories.

4This is an excellent text for learning some category theory. Its strength lies in the examples
that it provides, which are great for building intuition.
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Definitions

A category is given by

• a collection of objects X,Y,Z,...

• and morphisms f,g,h, which map between the objects...

where

• Each morphism has a domain object, and a codomain object. The
expression f : X → Y means that f is a morphism with domain X and
codomain Y .

• Each object has an associated identity morphism 1X : X → X.

• For any pair of morphisms f, g with the codomain of f equalling the
domain of g there exists a specified composite morphism fg. For exam-
ple, morphisms f : X → Y and g : Y → Z yield a composite morphism
fg : X → Z.

Furthermore, we define the composition of morphisms to be associative and uni-
tal, with the identity morphisms acting as two sided identities. More explicitly,

• For any morphism f : X → Y the composites 1Y f and f1X both equal f .

• For any composable triple of morphisms f, g, h the composite morphisms
h(gf) and (hg)f are equal and are written hgf .

If objects X and Y have morphisms f : X → Y and g : Y → X such that
gf = 1X and fg = 1Y we call the objects isomorphic, and the morphisms f and
g are isomorphisms. Morphisms with their codomain equalling their domain
are called endomorphisms, and endomorphisms which are also isomorphisms
are called automorphisms. Generally we distinguish between isomorphisms
and automorphisms since isomorphisms generally imply distinct domains and
codomains. The notation Hom(x, y) represents the set of all morphisms from x
to y.

We will write the names of categories in Sans Serif to make sure that it is
clear when we are discussing a category. It is tradition to name categories after
their objects with the associated morphisms being understood through context.
A morphism always specififes its domain and codomain, so really all you need
to determine a category is its morphisms. Furthermore, The Yoneda Lemma
shows that every object of a category is determined by its morphisms, so it
really is morphisms that should take center stage when one thinks about cate-
gories. With this in mind, we turn now to some examples of categories which
are related to this paper, or which are simply of interest.

1. Set is the category with sets as objects and functions as morphisms. The
isomorphisms in this category are bijections.
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2. Group has groups as objects and homomorphisms as morphisms, and it is
from this context that morphisms take their name. Naturally, isomorphic
groups are isomorphic in the categorical sense as well. Contained within
Group as a subcategory is Ab, the category of abelian groups.

3. Top consists of topological spaces with continuous functions as morphisms.
A counterpart to this is Top∗, which has topological spaces with specified
base points as objects, and base point preserving continuous functions as
morphisms. In the former, isomorphic objects are homeomorphic, and the
same goes for the latter, but with the restriction that the homeomorphisms
preserve base points.

4. Ring is defined similarly to Group, with rings as objects and ring homo-
morphisms as morphisms. It should be noted that in the context of this
paper we will only be discussing unital commutative rings as those have
been the exclusive subject of study within this class. Hence, in particular
we define Ring to be the category of unital commutative rings.

5. ModR is the category of modules over a ring R with morphisms being
module homomorphisms. This notation sometimes refers specifically to
left R modules in a non commutative setting, but that is not the case
here. This category is usually written as VecF when R is a field F and
similarly written as Ab when R is Z, as Z-modules and abelian groups are
equivalent.

One may notice that each of the above categories consists of objects and mor-
phisms that are merely sets and functions with additional structure, and so
appear similar to Set. Generally, these are referred to as concrete categories.
To illustrate that not all categories are like this, we give a few examples which
are quite different. Notice that the morphisms here are not necessarily functions.

1. BG is a category consisting of a single object with morphisms being the el-
ements of the group G. As there is only a single object within the category,
it follows that each group element acts as an endomorphism within the
category. BG is granted a group structure through the operation of compo-
sition, where pre composition can be thought of as left multiplication and
post composition is right multiplication. The group axioms follow from
the category axioms, where the identity morphism is the group identity,
and associativity follows from the associativity of composite morphisms.
Notice that every morphism is an isomorphism in this category because
group elements are required to have inverses. Categories in which every
morphism is an isomorphism are called groupoids.

2. (R,≤) may be considered as a category with real numbers as objects and
morphisms x→ y when x ≤ y. Notice that there are no isomorphisms of
distinct domain and codomain within this category.

3. MatR where R is a ring is a category with positive integers as objects. The
set of morphisms between two integers x and y, Hom(x, y), are all m× n
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matrices with entries in R. This satisfies the morphism axioms through
matrix composition, and the fact that identity matrices serve as identity
morphisms.

4. SubS is a category in which the objects are subsets of the specified set S
and the morphisms are inclusions. Again, there are no isomorphisms in
this category.

5. SubgZ has subgroups of Z as objects and inclusions as morphisms. SubgZ
is similar to SubS in that its morphisms are inclusions, as we will explore
in some examples later.

Functors and Diagrams

The introduction to this section mentioned that category theory can be used to
carry structures from one area of math to another, but so far we have kept dis-
cussion confined to individual categories. Having been introduced to categories
within familiar mathematical contexts, it seems natural to define a category
Cat with categories as objects. However, we don’t yet know what a morphism
between categories looks like. Ideally we want such a thing to ”preserve” cate-
gorical structure, so to this end we introduce functors.

A functor F : C → D with domain category C and codomain category D
has the following:

• An object Fc ∈ D for every object c ∈ C.

• A morphism Ff : Fc → Fc′ ∈ D for any morphism f : c → c′ ∈ C where
the domain and codomain of Ff are equal to F applied to the domain
and codomain of f respectively.

and we require that functors fulfill the axioms:

• For any composable pair f, g ∈ C we have that Ff ◦ Fg = F (f ◦ g).

• For each c ∈ C, F1c = 1Fc

After some consideration, it should be apparent that a functor transfers the
structure of the domain category into the target category in much the same
way a homomorphism, or a continuous function transfers structure. To get
an intuitive understanding of how functors work we will now consider some
examples.

• The fundamental group discussed above defines a functor π1 : Top∗ →
Group taking topological spaces (with a basepoint) to their fundamental
groups. Because a continuous function f : (X,x0) → (Y, y0) between
spaces induces a homomorphism f∗ : π1(X,x0) → π1(Y, y0), the functor
axioms are satisfied.
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• A functor may be endomorphic, mapping a category back onto itself. Such
an endofunctor is of the form P : Set → Set where P(A) 7→ PA, which
sends a set A to it’s power set PA = {A′|A′ ⊂ A}, and sends a function
f : A → B to f ′ : PA → PB that sends subsets A′ of A to subsets of
f(A′) of B.

• The multivariable chain rule may be viewed functorially. Let Euclid∗ be
the subcategory of Top∗ consisting of open subsets of Rn for any n ∈ N
with morphisms being differentiable functions. Then, the total derivative
evaluated at the basepoint of an open subset serves as a functor
D : Euclid∗→ MatR that sends differentiable functions to their Jacobian
matrix at the base point, while the objects, euclidean spaces, are sent
to their dimension. More explicitly, given pointed differentiable functions
f : Rn → Rm and g : Rm → Rl with base points a ∈ Rn and b ∈ Rm, we
have that f ◦ g : Rn → Rl, and we know that D(gf) is the Jacobian at
f ◦ g(a). As D is a functor, we also know that D(gf) is the composition
D(g)D(f) where D(f) and D(g) are the Jacobians of f(a) and g(b). This
compositional relationship is exactly the chain rule.

• Let F ⊂ K be a Galois extension and SubK/F be the category where
objects are intermediate fields F ⊂ L ⊂ K and morphisms are inclusions.
Let G = Gal(K/F ). The fundamental theorem of Galois Theory suggests
a bijective functor from SubK/F to SubgG. However, after looking at the
following diagram for a moment one realizes that this is not a functor as
we defined it earlier as all of the arrows are reversed. This is an example
of what we call a contravariant functor, which is essentially the same
as a functor except for that morphisms have their domain and codomain
swapped. Explicitely, a contravariant functor F : C→ D maps a morphism
f : c → c′ in C to a morphism Ff : c′ → c in D. Of course the functor
axiom for composition must also be reversed, i.e. for any composable pair
f, g ∈ C, Ff ◦ Fg = F (g ◦ f).

Q(
√

2,
√

3) {1}

Q(
√

2) Q(
√

6) Q(
√

3) {1, f} {1, fg} {1, g}

Q {1, f, g, fg}

L Gal(K/L)

KH  H

• A functor from a groupoid BG into a category C defines a G action on the
image of the single object in BG5.

5If the codomain of the functor in question is a vector space or a module then this falls into
the purview of Representation Theory, which is concerned with studying algebraic structures
by representing their elements as linear operators and vector spaces, thereby reducing certain
questions down to linear algebra. Because linear algebra is well understood, this can make it
easier to look at these abstract structures.
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Now it should be apparent how category theory allows one to apply results
from areas of math seemingly distinct to each other. All of the examples given
so far are quite concrete, but functors are often applied in a more abstract
sense. In this vein, we now introduce diagrams, which are central to the study
of category theory and essential in our definition of colimits.

Definition. A diagram is a functor F : J → C from an index category 6 J
into a category C.

Intuitively, an index category encodes the shape of a diagram of morphisms
and objects in the target category. We are already familiar with this concept in
the context of commutative diagrams, though not every diagram is commu-
tative. For example, The diagram representing the first isomorphism theorem
for rings may be viewed functorially

• • R R′

• R/I

'

f

π '
F

Another example is the commutative diagram from page 338 of Algebra(Artin).

• • Z[x] Z

• • Z[i] F5

kill
x2+1

kill
i−2

kill
x−2

kill
5

F

A monotonically increasing sequence of real numbers {xi}∞i=0 may be realizing
within (R,≤) with the diagram F : Seq≤ → (R,≤)

Seq≤ • • ... • • • ...

(R,≤) x0 x1 ... xi−1 xi xi+1 ...

F

It should be noted that these diagrams alone do not encode the results or proofs
of the First isomorphism theorem, or the maps on page 338 of Algebra, as it
would require a few additional specifications that are outside the scope of this
paper.

6Formally, this is defined as a small category, meaning that it only has a set’s worth of
arrows (Category Theory in Context).
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Colimits

Colimits are the main reason for providing the introduction to category theory
given in this paper. To understand colimits, we much give one final definition
in preparation. We define,

Definition. A cone under a diagram F : J → C with a vertex V ∈ C is a
family of morphisms Cone(V, λ) where

Cone(V, λ) = {λx : F (x)→ v|x ∈ J}

The following diagram represents the relationship.

F (x) F (y)

v

F (f)

λx λy

Using the example of the monotonically increasing sequence diagram F :
Seq≤ → (R,≤) from earlier, we see that a cone (b,xi ≤) under this diagram
looks like

x0 ... xi−1 xi xi+1 ...

b

x0
≤ xi−1

≤ xi
≤ xi+1

≤

The way to interpret this cone is that b ∈ R is a number that bounds this
whole sequence. Therefore, a diagram of this kind representing an unbounded
monotone sequence has no cones under it.

Definition. The colimit of a diagram in a category C F : J → C is a cone
(L, φ) under F such that any other cone under F factors uniquely through L.

F (x) F (y)

L

V

F (f)

λx λy

φx φy

u

In other words, for any cone(V, λ) under F : J → C, there exists a unique
morphism u : L→ V such that uφx = λx : F (x)→ V for every x ∈ J.

Returning to the previous example, if a diagram F : Seq≤ → (R,≤) has a
colimit L, it means that there is a morphism u : L → b for any cone(b,xi

≤).
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In the context of this category, this means that for any upper bound of b of the
sequence {xi}∞i=0 that this diagram represents, L ≤ b. Therefore, L is the least
upper bound of {xi}∞i=0, and as this sequence is monotonic it converges to L.

x0 ... xi−1 xi xi+1 ...

L

b

x0
≤

xi−1
≤

xi
≤

xi+1
≤

u

Colimits are a powerful concept; many seemingly unrelated concepts may
be interpreted as colimits with an appropriate choice of category and diagram.
In an intuitive sense, colimits tend to ”glue” objects together, though this is
somewhat of an oversimplification. Here are some examples:

Coproducts

Given two objects X,Y in a category C, their coproduct X
∐
Y is defined to be

the colimit of a discrete diagram consisting of X and Y . The following figure
illustrates this situation.

S

X X
∐
Y Y

ix iy

u
gf

One can intuitively think of the coproduct of two objects as ”adding” them
together, and in fact, the coproduct is sometimes called the categorical sum for
this reason. The following two examples are rather simple cases of coproducts.

1. The coproduct within SubS for two subsets of the parent set U, V ⊂ S we
have that their coproduct is the union of the two sets. This is because the
only morphisms in this category are inclusions of subsets, so two subsets
U, V with morphisms into a third subset W implies that W contains both
U, V and therefore contains their union, so the inclusion of U and V into
W always factors through U ∪ V . If we set S to be the English alphabet,
and U = {a, b}, V = {d, e}, and W = {a, b, c, d, e} then the coproduct
diagram looks like this.

{a, b, c, d, e}

{a, b} {a, b, d, e} {d, e}
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2. Consider SubgZ, the category of subgroups of Z. Let our two objects be
nZ and mZ, as any subgroup of Z looks like nZ for some integer n. It
follows that the coproduct of nZ and mZ will be dZ for some integer d.
Again, by the definition of the coproduct, any morphisms from mZ and
nZ into kZ must factor through dZ. Said in another way, if mZ and nZ
are subgroups of kZ then dZ must also be a subgroup of dZ. It follows
that d = gcd(m,n).

Here are some more concrete examples.

1. Within Set the coproduct of sets X and Y is simply the disjoint union of
those sets, hence the notation

∐
.

2. In Group this happens to be the free product described earlier. This can
be seen as follows: Let G1 and G2 be groups with group homomorphisms
f1 : G1 → K, f1(g1) = k1 and f2 : G2 → K, f2(g2) = k2. Additionally,
suppose that there is a group H with homomorphisms ιi : Gi → H such
that there is a unique homomorphism u : H → K for any K such that
u ◦ ιi = fi : H → K. Set K to be G1 and f1 to be the identity map.
It follows that because uι1 is the identity map, ι1 must be injective, so
G1 is a subgroup of H. A similar argument may be made for G2 ⊂ H.
Therefore, we may set ιi to be the inclusion map into H from Gi. Let H =
G1 ∗G2. Then for any fi : Gi → K we have the induced homomorphism
u : H → K where u ◦ ιi(gi) = fi(gi), so an element a1a2...n1n2 of H is
sent to f1(a1)f2(a2)...f1(n1)f2(n2). This is the only such homomorphism
that commutes with the fi homomorphisms because we have set ιi to be
the inclusion maps.

3. In Ab, the category of abelian groups, the coproduct of two groups is much
simpler than it is in Group, as being confined to abelian groups forces the
coproduct to be abelian itself. As a result, the coproduct of two abelian
groups A and B is A

⊕
B, the direct sum of A and B.

4. Interestingly, the coproduct within Top and Top∗ are not the same. Within
Top, the coproduct of two spaces is the disjoint union topology of those
spaces, as one might expect given the first example7. However, within
Top∗ each space has a specified base point, and as the morphisms in this
category are continuous maps that map base points to base points it fol-
lows that from setting the maps from X∗ and Y∗ into (X

∐
Y )∗ to be

inclusion maps that the base point is shared between the two otherwise
disjoint sets. In other words, (X

∐
Y )∗ is the disjoint union of X∗ and Y∗

with their base points identified, otherwise known as the wedge sum of X
and Y .

7Again, the objects and morphisms of concrete categories are just sets and functions along
with additional structure, so categorical structures within Set often provides insight into how
those same structures will look in other concrete categories
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Pushouts

A pushout is the colimit of a diagram of three objects, X,Y, Z with two mor-
phisms f : Z → X, g : Z → Y sharing a common domain out of one of the
objects into the two others. Said in another way, it is the colimit of a dia-
gram indexed as • ← • → •. Concisely, the pushout P along with morphisms
i1, i2 makes the following diagram commute and any other object morphism
triple (Q, j1, j2) that makes the diagram commute must factor through P via a
unique morphism u.

X

Z P Q

Y

g

f i1

i2

u

j2

j1

Intuitively, one may think of the pushout P of two objects X,Y with mor-
phisms f : Z → X, g : Z → X as the object obtained by ”glueing” X and Y
together along the images f(Z) and g(Z). We will now explore some examples
of pushouts.

1. Within Set, the pushout of two sets X,Y with functions f : Z → X, g :
Z → Y is the disjoint union of X and Y along with the finest equivalence
relation such that f(z) ∼ g(z)∀z ∈ Z.

2. A particular kind of pushout known as an adjunction space is often used
in topology. Suppose you have a topological space Y with a subspace Z
and you want to create a new space P that looks like Y glued to another
space X along Z. A natural way to do this is to find a continuous map
f : Z → X and to then take the pushout of f and the inclusion of Z into
Y . The resulting space is the disjoint union of X and Y with the quotient
map identifying points in Z with their image in X. For example, let X
and Y both be disks Dn, and f and g be the inclusions of Sn−1 into ∂X
and ∂Y respectively. Then P is the space achieved by glueing the two
discs together along their boundary, Sn.

3. In the category of Groups pushouts are given by the free product with
amalgamation. The free product with amalgamation is given by taking
two groups, G and H, along with two monorphisms φ : F → G, ψ : H → H
where F is an arbitrary set. The free product begins as normal, but with
the added relation that φ(f)ψ−1(f) = 1. This enforces a relationship
between the elements of G and H.

The amalgamated free product can also be defined by letting N be the
smallest subgroup of G∗H containing all elements of the form φ(f)ψ−1(f).
Then the amalgamated free product is given by the quotient group
(G ∗H)/N
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These last two examples are what is basically going on within the Van Kam-
pen theorem, at least in categorical terms. Of course, the devil is in the details,
so we finally close our brief jaunt through category theory to move on to proving
the Van Kampen theorem.

Van Kampen’s Theorem

Van Kampen’s theorem is a statement which allows us to compute the fun-
damental group of a space which is comprised of several smaller spaces. Van
Kampen’s can be stated in a number of different ways, so two different state-
ments of it will be given here. First we will discuss the version of the theorem
which uses colimits, and then we will move to a slightly more intuitive statement
of the theorem. They are equivalent, and both provide important perspectives
on what this theorem means for our final construction.

Van Kampen’s Theorem in the language of colimits

Theorem. Let X be path connected and choose a basepoint x ∈ x Let O be a
cover of X by path connected open subsets such that the intersection of finitely
many subsets in O is again in O and x is in each U ∈ O. Regard O as a category
whose morphisms are the inclusions of subsets and observe that the functor
π1(−, x), restricted to the spaces and maps in O, gives a diagram π1|O : O → G
of groups. The group π1(X,x) is the colimit of this diagram. In symbols,

π1(X,x) ∼= colimU∈Oπ1(U, x)

Because of the importance of this theorem, it is important to go through it
step by step. We begin with a space X which is path connected, and we chose
a base point x ∈ X.

As an example, consider a space X which consists of 3 circles, where the base
point x is in their intersection.

(1)

We will choose of find some open cover of X, written O, which has the
property that ∀U1, U2, ..., Un ∈ O, U1 ∩ U2... ∩ Un ∈ O, and the property that
x ∈ U ∀ U ∈ O.
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In our example, the picture of this might look like on open set in the cover
for each circle in X and an open set for each of the intersections, 7 open sets in
total.

(2)

We think of this cover as a category, where the objects are open sets in
the cover and the morphisms between them are the inclusion maps. Then,
we consider the fundamental group of each open set in the cover. This is the
fundamental step in the theorem, we have found a collection of open sets which
’form’ our larger space, and we consider the fundamental group of each piece.
The goal of this theorem is to formalize the way in which the fundamental
groups can be ’stitched’ together to form the fundamental group of the whole
space. To do this, we define a functor, a map between categories, which maps
each open set in the cover to its fundamental group.

In the example we have been considering, the fundamental group of each
piece is the trivial group, since each open set is simply connected.

This gives us a diagram, π1|O : O → G of groups, and the fundamental
group of X is the colimit of this diagram.

This is a somewhat non-intuitive result, and is the primary reason for the
inclusion of the second statement of the theorem, which may be more clear, and
which is certainly easier to use in basic computations.

Van Kampen’s Theorem in the language of isomorphisms

Theorem. If X is the union of path-connected open sets Uα each containing
the basepoint x ∈ X and if each intersection Uα ∩ Uβ is path-connected, then
the homomorphism φ : ∗απ1(Uα) → π1(X)is surjective. If in addition each
intersection Uα ∩ Uβ ∩ Uγ is path-connected, then the kernel of φ is the normal
subgroup N generated by all elements of the form iαβ(ω)iβα(ω)−1, and so φ
induces an isomorphism π1(X) = ∗απ1(Uα)/N .

iαβ(ω) refers to an element ω in the intersection Uα∩Uβ which, through the
inclusion map, is being viewed as an element of X. Furthermore, the notation
∗απ1(Uα) refers to the free product Uα1 ∗ Uα2 ∗ ... ∗ Uαn .

This theorem makes it easier to see the ’big picture’ of Van Kampen’s the-
orem, that any element of the fundamental group of the larger space is con-
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structed by going through loops in each of the pieces comprising it. To construct
any loop in X with basepoint x, one can take a loop in any Ui or, with a bit of
fiddling, concatenate and reduce loops going through several Ui.

Most theorems are best understood by going through a few examples of their
application, and Van Kampen’s is no exception.

Examples

1. A Disk and a Loop

Let S be a circle and consider the space X formed by attaching a disk D
along the boundary.

The space X can be written as (∂D ∪ S) ∪ (D), a union of two open sets,
and the intersection (∂D ∪ S) ∩ (D) = ∂D is path connected. We will
compute the fundamental group π1(X,x) where x is some point in the
intersection ∂D.

Van Kampen’s theorem tells us that:

π1(X) = ∗απ1(Uα)/N

Since we only have two open sets in our cover,

∗απ1(Uα) = π1(∂D ∪ S) ∗ π1(D) = Z ∗ {1} = Z

For the case when the cover consists of only 2 sets with a simply connected
intersection, N reduces to π1(U1 ∩ U2), so here it can be computed as

N = π1(∂(D)) = Z.

N = π1(∂(D)) = Z.

Combining these two results tells us that:

π1(X) = ∗απ1(Uα)/N = Z/Z = 1, the trivial group.

2. A Figure 8

Consider a space X formed by two circles, connected at a single point x:

(3)

We will compute the fundamental group π1(X,x), by again decomposing
this space into two open sets, U1 and U2. U1 is comprised of the first
circle, and a small piece extending into the second, and U2 is the reverse.
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Since U1 and U2 deformation retract to circles, they both have fundamen-
tal group Z.

We can again use the simplification of N to compute

N = π1(U1 ∩ U2).

U1 ∩U2 deformation retracts to a single point, so it has the trivial funda-
mental group and we can compute:

π1(X) = ∗απ1(Uα)/N = Z ∗ Z/{1} = F2

Here F2 refers to the free group on two generators, the result of the free
product of two copies of Z.

3. A Bouquet of Circles

We can use an inductive process to find the fundamental group of a bou-
quet of n circles, all joined at a single point.

We begin with the result from the previous example, and consider adding
another circle. We can define U1 as the open set containing the original 2
circles, as well as a small open neighborhood of the new circle. Similarly,
U2 can be defined as the new circle, with a small open neighborhood
of the old two. Then the computation follows almost exactly as before.
U1 ∩ U2 again deformation retracts to a single point, so it has the trivial
fundamental group, and we know π1(U1) = F2 = Z ∗ Z, and π1(U2) = Z
Hence,

π1(X) = ∗απ1(Uα)/N = (F2 ∗ Z)/{1} = (Z ∗ Z ∗ Z)/{1} = F3

Following this same procedure allows us to calculate that the fundamental
group of a bouquet of n circles will always be Fn, the free group on n
generators.

21



Final Construction

We now endeavor to construct a space X with fundamental group of G, where
G is finitely presented. Let G be presented by

〈g1, . . . , gn|r1, . . . , rm〉.

We begin with the space Rn, the rose with n petals, whose fundamental group is
Fn, the free group on n letters. Fn has no relations, so we need to add them in.
Considering r1 as a reduced word with k letters, we define a map f1 : S1 → Rn
by splitting S1 into k equal pieces, and send the first piece around the first letter
of r1, and the ith section to the ith letter of r1 (with respect to the labels of Rn).
We attach the disk D2 along this map f1, and call the space after attaching the
disk X1. Since π1(D2) = 1, Van Kampen’s Theorem implies that

π1(X1) ∼= 〈g1, . . . , gn|r1〉.

Now we do an inductive step. AssumeXi has fundamental group 〈g1, . . . , gn|r1, . . . , ri−1〉.
We define fi : S1 → Rn in the same way we did for f1, using the word ri. There
is a natural map qi : Rn → Xi, which is similar to the inclusion, although Rn
may have relations which prevent injectivity. We attach a disk by the map qi◦fi
to define Xi+1, which has fundamental group

π1(Xi+1) ∼= 〈g1, . . . , gn|r1, . . . , ri〉.

Letting X = Xm yields our result.
Now, we will give some examples of some spaces with fundamental groups

of common finitely presented groups.

• Let Cn be the cyclic group of order n. To obtain the space X with π1(X) ∼=
Cn, we attach a disk to S1 along the map f(e2πix) = e2πix·n. The resulting
space looks like a disk, but on the boundary each point is identified with
n− 1 other points which are spaced evenly around the circle.

• The Klein 4 Group is presented by 〈a, b|a2, b2, (ab)2〉. So we attach 3 disks
to R2. We first attach the maps killing a2 and b2. If XC2 is the space
obtained from the previous example using C2, after this attachment we
have a space homeomorphic to XC2

∧XC2
with fundamental group C2∗C2.

We then attach the map going around abab, which kills the remaining free
part of our group leaving us with the Klein 4 Group.
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[9]

• Finally, we’ll give an example of a space X with π1(X) ∼= Z×Z using our
construction. This is presented by 〈a, b|a−1b−1ab〉. We attach a disk via
the obvious map which gives us our space. This space X turns out to be
homeomorphic to the torus! If we think of the attaching map as a map of
the square8 with each edge mapping to a different letter, we can reverse
the arrows of the a−1 and b−1 edges to relabel them a and b. Then we
have the standard identification of sides of the square inducing the torus.

8The square is homeomorphic to S1.
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