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1 Exact Sequences

A sequence of A−modules and A−homomorphisms

· · · →Mi−1 →fi Mi →fi+1 Mi+1 → · · ·

is exact at Mi if Im(fi) = ker(fi+1). The sequence is exact if it is exact at each Mi.

Lemma 1.1. Properties of exact sequences:

• 0→M ′ →f M is exact if and only if f is injective.

• M →g M ′′ → 0 is exact if and only if g is surjective.

• 0→M ′ →f M →g M ′′ → 0 is exact if and only if f is injective, g is surjective and g induces
an isomorphism of coker(f) = M/f(M ′) onto M ′′.

Proof. 0 → M ′ →f M is exact if and only if we have im(0) = ker(f) by definition so that means
that ker(f) = 0 and this is true if and only if f is injective.

M →g M ′′ → 0 is exact then im(g) = ker(0) and since ker(0) = M ′ we have im(g) = M ′ and
this is true if and only if g is surjective.

A sequence of the type 0 → M ′ →f M →g M ′′ → 0 is called a short exact sequence. Note that
any long exact sequence · · · → Mi−1 →fi Mi →fi+1 Mi+1 → · · · can be split up into short exact
sequences. If Ni = im(fi) = ker(fi+1) we have 0→ Ni →Mi → Ni+1 → 0 for all i.

Example 1.1. A simple and very general example of a short exact sequence is generated by an
arbitrary homomorphism. Let f : A→ B be a homomorphism of some kind (be it between groups,
rings or modules). Then it gives rise to this exact sequence:

0→ ker f → f → im f → 0

2 Tensor Products

In general, tensors can be regarded as many types of objects depending on the context but for it
to be relevant to our class we are going to treat it as a ring module and then as a functor. The
word functor comes from Category theory but hopefully it will make sense with the way we present
it here in regards to the construction of the Tor functor for the purpose of handling problems
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associated with sequences better. To vaguely motivate introducing tensor products as a concept,
we can think about the convenience of being able to take bilinear maps and to turn them into linear
maps (in this case we are going to be talking about R-module homomorphisms).

Let A be a ring and let M,N,P be A-modules. We will be constructing a new A-module T called
the tensor product of M and N with the property that A-bilinear mappings M ×N → P are in a
natural correspondence which is bijective with the A-linear mappings T → P for any P A-module.
{f : M ×N → PA-linear} ↔ {g : T → P A-linear}.

Definition 2.1 (A-bilinearity). A-bilinear means that F : M×N → P it satisfies these conditions:

• f(λm, n) = f(m,λn) = λf(m,n)

• f(m,n1 + n2) = f(m,n1) + f(m,n1)

• f(m1 +m2, n) = f(m1, n) + f(m2, n)

where λ ∈ A, m1,m2, n ∈M and n1, n2, n ∈ N .

Definition 2.2 (Tensor product of modules). A tensor product of two A-modules M and N is an
A-module denoted by M ⊗N such that there exists an A-bilinear mapping g : M ×N → M ⊗N
with the following universal property:
given any A-module P and any A-bilinear mapping f : M ×N → P , there exists a unique A-linear
mapping (be careful, A-linear and not A-bilinear!) f ′ : M ⊗N → P such that the diagram below
commutes and we have f = f ′ ◦ g. (Another way of stating this is that every bilinear function on
M ×N factors through M ⊗N)

M ⊗N

M ×N P

∃g f ′

Theorem 2.1 (Construction of the tensor product). For any A-modules M and N there exists a
pair (M ⊗AN, g) consisting of an A-module and a mapping from M ×N →M ⊗N which has the
universal property described above. Additionally, the tensor product is unique up to isomorphism.
In other words, if (T, g) and (T ′, g′) are two pairs with this property, then there exists a unique
isomorphism J : T → T ′ such that j ◦ g = g′.

Proof. Existence: Let C be a free A module AM×N . The elements of C are linear combinations of
elements of M ×N with coefficients in A, so they are of the form

∑n
i=1 ai(xi, yi) where ai ∈ A, xi ∈

M,yi ∈ N . Let D be a submodule of C generated by all elements of C of the following types:

(x+ x′, y)− (x, y)− (x′, y)

(x, y + y′)− (x, y)− (x, y′)

(ax, y)− a(x, y)

(x, ay)− a(x, y)

Let us define T := C/D. For each basis element (x, y) of C, let x ⊗ y denote its image in T .
Then T is generated by the elements of the form x⊗ y, and from our definitions we have

(x+ x′)⊗ y = x⊗ y + x′ ⊗ y
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x⊗ (y + y′) = x⊗ y + x⊗ y′

(ax)⊗ y = x⊗ (ay) = a(x⊗ y)

Equivalently, the mapping g : M ×N → T defined by g(x, y) = x⊗ y is A-bilinear. Any map f
of M × N into an A-module P extends by linearity to an A-module homomorphism f : C → P .
Suppose that f is A-bilinear. Then by using he definitions, f vanishes on all the generators of D,
hence on the whole of D. This means that it induces a well-defined A-homomorphism f ′ of T into
P such that f ′(x ⊗ y) = f(x, y). The mapping f ′ is uniquely defined by this condition, therefore
the pair (T, g) satisfy the conditions of the proposition.

Uniqueness:

Let (T, g) and (T ′, g′) be the tensor products of M and N . We will treat T ′ as the A−module
and g′ as the A-bilinear mapping from M×N to T ′, then it is easy to see that that by the universal
property of (T, g), we get a unique j : T → T ′ such that g′ = j ◦ g. Then we do the same thing, ex-
cept we switch the roles of (T, f) and (T ′, f ′), we get a unique j′ : T ′ → T such that g = j′◦g′. From
the composition equalities, we can conclude that j◦j′ and j′◦j must be the identity, therefore j = j′

and is an isomorphism. This is why we say that tensor products are unique up to isomorphism.

Of course, we can use induction to generalize tensor products, where instead of working with
A-bilinear mappings, we work with A-multilinear mappings. Below are some of the more commonly
used tensor product isomorphisms that can be proved by diagram chasing methods.

Lemma 2.2. Let M,N,P be A-modules. Then there exist unique isomorphisms:

1. M ⊗N → N ⊗M

2. (M ⊗N)⊗ P →M ⊗ (N ⊗ P )→M ⊗N ⊗ P

3. (M ⊕N)⊗ P → (M ⊗ P )⊕ (M ⊗ P )

4. A⊗M →M

Now we are going to connect the concept of tensors to exact sequences we introduced in the
beginning. We are going to be tensoring the sequence.

First, we must introduce the concept of left and right exactness, which tells us which part of the
sequence is preserved to be exact by a functor.

Definition 2.3. If we have a functor, say F and a a short exact sequence 0→ A→ B → C → 0,
then the functor F is called right exact if the new sequence F (A) → F (B) → F (C) → 0 is exact.
It is left exact if 0→ F (A)→ F (B)→ F (C) is exact.

It turns out that tensor products are right exact, but not necessarily left exact.

Theorem 2.3 (Right exactness of the tensor product). Let M ′ →f M →g M ′′ → 0 be an exact
sequence of A-moudules and homomorphisms, and let N be any A-module. Then the sequence

M ′ ⊗N →f⊗1→M ⊗N →g⊗1 M ′′ ⊗N → 0

is exact. Note that 1 here denotes the identity mapping on N .
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Example 2.1. Let us consider the exact sequence 0 → Z f−→→ Z where we have Z-modules and
(x) = 2x for all x ∈ Z. If we tensor with N = Z/2Z, we get the sequence

0→ Z⊗N f⊗1−−→ Z⊗N

which is not exact because for any x⊗ y ∈ Z⊗N we hav e

(f ⊗ 1)(x⊗ y) = 2x⊗ y = x⊗ 2y = x⊗ 0 = 0

This makes f⊗1 the zero mapping, but it is clear that Z⊗N 6= 0. This shows that tensor products
are sometimes not left exact.

Lemma 2.4. (Z\mZ)⊗Z (Z\mZ) = 0 if m,n are coprime.

Proof. If m,n are co-prime then we can find r, s such that mr + ns = 1. Let us take an arbitrary
element x× y of (Z\mZ)⊗Z (Z\mZ). Then

x⊗ y = 1 · x⊗ y = (mr + ns)(x⊗ y)

3 Tor Functor

Definition 3.1 (Chain complex). A chain complex is a sequence of modules

· · · → An+2 →∂n+2 An+1 →∂n+1 An →∂n · · ·

where every ∂i ◦ ∂i+1 = 0

As a note, an exact sequence is essentially a chain complex, where its homology groups are all
zero. Informally, Homology groups represent topological differences within a space. More percisely,
for topoligcal space X, Hk(X) is the kth homology group of X and Hk(X) corresponds to the
number of k-dimensional holes in X. For example: for the torus (T 2) H0(T

2) = Z since the torus
is connected.
Hi(F∗) = ker ∂i

im ∂i+1

Note: ∂i ◦ ∂i+1 = 0 iff im δi+1 ⊆ ker δi

Definition 3.2 (Free resolution). Let M be an R-module. Let M be an R-module of a ring R. A
free resolution of M is a complex of free R-modules

F∗ = · · · → F3 →∂3 F2 →∂2 F1 →∂1→ F0 → 0

where Fi are free R-modules such that

• H0(F∗) = M

• Hi(F∗) = 0

Lemma 3.1. These statements are equivalent:

1. H0(F ) = M

2. ker ∂0
im ∂1

= M
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3. F0
im ∂1

= M

4. coker ∂1 = M

5. F1 →∂1 F0 →M → 0 is exact

We can think of F∗ as an approximation (possibly infinite) of M by free R-modules.

Now we will finally be introducing the Tor functor and the reason it is needed is because of the
inadequecy of tensor products. As we have shown above, tensor product as a functor is Right exact
but not Left exact and to ”compensate” for that we use Tor.

Definition 3.3 (Tor functor). For R-modules M and N , TorRi (M,N) is an R-module defined by
the process: Take some free resolution F∗ of M .

F∗ = · · · → F3 →∂3 F2 →∂2 F1 →∂1→ F0 → 0

Next tensor F∗ with N

F∗ ⊗N = · · · → F3 ⊗N →∂3 F2 ⊗N →∂2 F1 ⊗N →∂1→ F0 ⊗N → 0

then we define

TorRi (M,N) := Hi(F∗ ⊗R N) =
ker(∂i ⊗ id)

im(∂i+1 ⊗ id)

Example 3.1. If we take R to be Z and treat M as a Z-module then we will actually have an
abelian group. As a note the definition of complexes does work with abelian groups and modules
in general. We can compute the TorZi (Z/(n)) ∀i where n ≥ 2.

4 Universal Coefficient Theorem

The Universal Coefficient Theorem shows that there exists a relationship between homology groups
with different coefficients. More precisely, it shows that there is a relationship between Z coefficients
and arbitrary coefficients in the context of homology. This is useful because it allows us to move
between different homology groups with different coefficients using Tor. Below is the theorem for
the homology.

Theorem 4.1. If C is a chain complex of free abelian groups and G is an R−Module, then there
exists a short exact sequence, for all n and G:

0→ Hn(C)⊗G→ Hn(C;G)→ Tor1(Hn−1(C), G)→ 0

and this sequence splits.

Before providing the proof, there are a few definitions and properties to be familiar with:

Definition 4.1 (coKer). For f : A→ B a group homorophism coKer(f) = B/Im(f)

Definition 4.2 (Projective). For P an R −Module, P is projective if for L,N,M R −Modules,

0→ L
ψ−→M

φ−→ N → 0 is exact, then 0→ HomR(L,P )
ψ′−→ HomR(M,P )

φ′−→ HomR(N,P )→ 0 is
also exact.
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Definition 4.3 (Projective Resolution). Let A be an R−Module. A projective resolution of A is
an exact sequence:

...→ Pn
dn−→ Pn−1 → ...

d1−→ P0
ε−→ A→ 0

where all Pi are projective.

Below are some useful lemmas used during the proof of the theorem:

Lemma 4.2. For A,B right R−Modules and C,D left R−modules, there exist unique isomor-
phisms:

(A⊕B)⊗ C ' (A⊗ C)⊕ (B ⊗ C)

and similarly:

A⊗ (C ⊕D) ' (A⊗ C)⊕ (A⊗D)

Lemma 4.3. Let 0→ L
ψ−→M

φ−→ N → 0 be a short exact sequences of chain complexes. We want
to show that we can stretch this sequence into a long exact sequence of homology groups. i.e:

...→ Hi+1(N)→ Hi(L)→ Hi(M)→ Hi(N)→ Hi−1(L)→ ...

Now we will define a free projective resolution of L,M,N so we have:

...→ P1 → P0
ε−→ L→ 0

...→ P ′1 → P ′0
ε′−→M → 0

...→ P ′′1 → P ′′0
ε′′−→ N → 0

Then, if we tensor by the R−Module D we get:

...→ P2 ⊗D → P1 ⊗D → P0 ⊗D → 0

...→ P ′2 ⊗D → P ′1 ⊗D → P ′0 ⊗D → 0

...→ P ′′2 ⊗D → P ′′1 ⊗D → P ′′0 ⊗D → 0

...→ P0 ⊗D
ψ−→ P ′0 ⊗D

φ−→ P ′′0 ⊗D → 0

This is cool, because then we use Tor and get our long exact sequence. we have:

...→ Tor2(N,D)
δ1−→ Tor1(L,D)

ψ∗−→ Tor1(M,D)
φ∗−→ Tor1(N,D)

δ0−→ L⊗D ψ∗−→M⊗D φ∗−→ N⊗D → 0

Now for the proof.

Proof:
Let D,L,N all be R −Modules. First we define δi : Tori(N,D) → Tori−1(L,D) which is a

homomorphism where [n] 7→ [l] where n ∈ ker(di) and l ∈ Li−1. Then, we let ... → Cn
δi−→

Cn−1 → be a chain complex of free abelian groups. We let Bn = Im(δn) and An = ker(δn) ⊂
Cn. Also notice that Bn ⊂ An. This means that δn|An = 0 = δn|Bn . Therefore, we can form
the following short exact sequence:

0→ An → Cn
δn−→ Bn−1 → 0
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Since subgroups of free abelian groups are also free abelian groups, we have that
Cn ' An ⊕Bn−1. Next we will tensor our short exact sequence with G. We now have:

0→ An ⊗G→ Cn ⊗G
δn⊗1−−−→ Bn−1 ⊗G→ 0

We then can apply the Lemma 4.2 to realize that the above sequence is split. Then, using
Lemma 4.3, we can identity a long sequence of the homology groups:

...→ Hn(A;G)→ Hn(C;G)→ Hn(B;G)→ Hn−1(A;G)→ ...

However, if we return to the earlier sequence, we observe that the chain complex of An only
contains the zero homomorphims. This implies that Hn(A;G) = An⊗G/0 = An⊗G, ∀n. This
is also the case for the chain complex of Bn. Therefore we also have that Hn(B;G) = Bn⊗G.
This is every useful since it means that our long sequence is isomorphic to:

...→ Bn ⊗G→ An ⊗G→→ Hn(C;G)→ Bn−1 ⊗G→ An−1 ⊗G→ ...

Now, we pick some b ⊗ g ∈ Bn ⊗ G. But, since we know that δn ⊗ 1 is surjective, it implies
that there exists a c ⊗ g ∈ Cn ⊗ G such that δn ⊗ 1(c ⊗ g) = b ⊗ g. Additionally, since
Bn−1 ⊂ An−1 ⊗G and b⊗ g ∈ Bn ⊗G, we know that b⊗ g ∈ An−1 ⊗G. This is useful since
we can now define a boundary map f : Bn ⊗ G → An ⊗ G. Let in be the inclusion map
Bn → An, then, we can define f as f = in ⊗ 1. We relabel Hn(C;G) as Dn. Therefore, we
can also write Dn+1 = An⊗G and Dn+2 = Bn⊗G. Next we will define an extension of Cn+1

by Cn using our inclusion maps from above. Therefore, we have:

Cn ' coker(Dn+2 → Dn+1) = coker(Bn ⊗G→ An ⊗G) = coker(in ⊗ 1)

and

Cn−1 ' coker(Dn−1 → Dn−2) = coker(Bn−1 ⊗G→ An−1 ⊗G) = coker(in−1 ⊗ 1)

This is significant because we can now form the short exact sequence:

0→ coker(in⊗)→ Hn(C;G)→ ker(in−1 ⊗ 1)→ 0

where coker(in ⊗ 1) = An ⊗G/Im(in ⊗ 1)
Notice that a general group homomorphism f : A→ B, we have an exact short sequence:

A
f−→ B → coker(f)→ 0

In this context, we already know that for Bn
in−→ An → coker(in) → 0, that coker(in) =

Hn(C). By right exactness of the tensor product we have the following sequences:

Bn ⊗G
in⊗1−−−→ An ⊗G→ coker(in ⊗ 1)→ 0

Bn ⊗G
in⊗1−−−→ An ⊗G→ Hn(C)⊗G→ 0

This implies, independent of the choice of Bn and An that coker(in ⊗ 1) ' Hn(C)⊗G Now,
we want to determine the ker(in ⊗ 1). We will use the free resolution of Hn(C) so we get

0→ Bn
in−→ An → Hn(C)→ 0
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Then, when we tensor with G we get:

0→ Bn ⊗G
in−→ An ⊗G→ Hn(C)⊗G→ 0

Now, all we have left is to apply Tor. First notice that TorZ1 (H ⊗ G) = H1(Bn ⊗ G) =
Ker(in ⊗ 1). Therefore we get the following sequunce:

0→ Hn(C)⊗G→ Hn(C;G)→ Tor1(Hn−1(C), G)→ 0

Therefore we have completed the construction, all we have left now is to show that the above
sequence splits.
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