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1 Introduction

We provide exposition on Sheaf Theory based on Vakil’s text [Vak15], and then
proceed to introduce Riemann surfaces and C̆ech cohomology from Miranda’s
text [Mir95].

2 Sheaves

Sheaves

Sheaves are objects defined on topological spaces. The goal of a sheaf is to
encode local information on the space. To define a sheaf though, we must first
define the presheaf.

Definition Presheaves

Let X be a topological space. A presheaf F on X is a mapping encoded by
the following:

1 ) For each open set U ⊆ X, there is a set F (U)

2 ) For each inclusion of open sets U ⊆ V , there is a function

resV,U : F (V )→ F (U)

The two following conditions must also hold:

· For all open U ⊆ X, resU,U = idF(U).

· If U ⊆ V ⊆W are open sets, then

resW,U = resV,U ◦ resW,V

The presheaf F is essentially the collection of all the information above.
When defining a presheaf on a space X, one must specify both the sets F (U)
for every open set U ⊆ X and the maps resV,U for each inclusion U ⊆ V . The
elements of F (U) are called sections over U . The maps resV,U will frequently
be restiction maps, hence the notation.

For those familiar with category theory, a presheaf F on X is simply a
contravariant functor F : C → Sets where C is the category of open sets in X.

Notes on Presheaves

The definition of a presheaf that we gave is actually the definition for a
presheaf of sets. The above definition can be extended to different classes of
objects. For example, a presheaf of groups would have the exact same definition
given above except for each open U ⊆ X, F (U) is now a group and for each
inclusion U ⊆ V , resV,U is now a group homomorphism. We can similarly
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define presheaves of rings, Abelian groups, R-modules, etc.

Examples of presheaves

Continuous Functions

Let X,Y be topological spaces. For each open U ⊆ X, define:

F (U) = {f : U → Y | f is continuous}

and for each inclusion U ⊆ V , define resV,U : F (V )→ F (U) by:

resV,U (f) = f |U

Claim: F is a presheaf.

Proof. Let U ⊆ X be open. Then resU,U (f) = f |U = f since f : U → Y . Thus,
resU,U = idF(U)

Now let U ⊆ V ⊆W . Then we have:

resW,U (f) = f |U = (f |V )|U = resV,U ◦ resW,V (f)

So resW,U = resV,U ◦ resW,V .

∴ F is a presheaf on X.
�

In the above example, F is a presheaf of sets. If Y has a ring structure
(e.g. Y = R), then F would be a presheaf of rings since F (U) defines a ring of
functions and the restriction maps resV,U would define ring homomorphisms.

Here’s another example:

The Constant Presheaf

Let S be any set and X a topological space. We define the constant presheaf
Spre on X by setting Spre(U) = S for all open U ⊆ X and resV,U = idS for all
inclusions U ⊆ V .

Now we can define sheaves on a topological space X.

Definition Sheaves

Let F be a presheaf on a topological space X. F is a sheaf on X if the
following two conditions hold:

1) Identity Axiom Let U ⊆ X be an open set and
⋃
α∈J Uα = U an

open cover of U . If f1, f2 ∈ F (U) are two sections such that resU,Uα(f1) =
resU,Uα(f2) for all α ∈ J , then f1 = f2.

2) Gluability Axiom Let U ⊆ X be an open set and
⋃
α∈J Uα = U an

open cover of U . For each α ∈ J , let fα ∈ F (Uα). If, for all α, β ∈ J , we have:
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resUα,Uα∩Uβ (fα) = resUβ ,Uα∩Uβ (fβ)

Then there exists a section f ∈ F (U) such that resU,Uα(f) = fα for all
α ∈ J .

Example and non-example of a sheaf

Let’s consider the two examples of presheaves that we gave before.

Continuous Functions

Continuous functions will form a sheaf on X.

Proof. Let F be the presheaf on X given by continous functions f : X → Y ,
as before. To show that F is a sheaf, we just need to check the Identity Axiom
and the Gluability Axiom.

1) Identity Let U be open and
⋃
α∈J Uα = U an open cover of U . Let

f1, f2 ∈ F (U) be two sections such that resU,Uα(f1) = resU,Uα(f2) for all α ∈ J .
Then f1|Uα = f2|Uα for all α ∈ J . Let x ∈ U . Then x ∈ Uα for some α ∈ J . So
we have that

f1(x) = f1|Uα(x) = f2|Uα(x) = f2(x)

Thus, f1 = f2.

2) Gluability Again, let U be open and
⋃
α∈J Uα = U an open cover of U .

Let fα ∈ F (Uα) for each α ∈ J so that for any pair α, β ∈ J , we have

resUα,Uα∩Uβ (fα) = resUβ ,Uα∩Uβ (fβ)

Then we have
fα|Uα∩Uβ = fβ |Uα∩Uβ

for any α, β ∈ J .

Define f : U → Y by f(x) = fα(x) when x ∈ Uα.

f is well defined because of the condition that fα|Uα∩Uβ = fβ |Uα∩Uβ for
any α, β ∈ J . Furthermore, we have that f |Uα = fα is continuous for every
restriction corresponding to α ∈ J . Thus, f is also continuous and f ∈ F (U).
f satisfies the condition for the Gluability Axiom and so we are done.

∴ F is a sheaf on X. �

Constant presheaf (Non-example)

It turns out that Spre is not a sheaf in general. We will not go into details
but if X is a two-point discrete space and S has at least two elements, then
Spre will fail the gluability axiom.
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To turn the constant presheaf into a sheaf, we need to slightly adjust the
definition using the fact that continuous functions form a sheaf.

Definition Constant Sheaf
Let S be a set, X a topological space and define S to be the sheaf formed

by the continuous functions from X → S where S is equipped with the discrete
topology. S is called the constant sheaf.

Another way to think about S is the following: the constant sheaf S is
constructed by all the maps X → S which are locally constant.

Here is another important sheaf.

Proposition Skyscraper Sheaf

Let X be a topological space, p ∈ X, and S a set. Let ip : {p} → X denote
the inclusion map. For an open U ∈ X, define the map ip,∗S(U) as follows: if
p ∈ U , then ip,∗S(U) = S. Otherwise, ip,∗S(U) = {e} where {e} is some fixed
singleton. ip,∗S defines a sheaf on X and called the skyscraper sheaf.

Verifying that the skyscraper sheaf does indeed define a sheaf is slightly
painful so we will skip the proof. However, the skyscraper sheaf can be defined
in a different, arguably more intuitive way than as above. To give the alternative
definition, we first define the sheaf of sections on a map.

Proposition Sheaf of sections on a map

Let µ : Y → X be a continuous map. To each open U ⊆ X, define F (U) by

F (U) = {s : U → Y |s is continuous and µ ◦ s = idU}

F defines a sheaf on X.

Proof. The restriction maps are resV,U (s) = s|U . Let U ⊆ X be an open set
and

⋃
α∈S Uα = U an open cover of U .

1) (Identity) Let f, g ∈ F (U) such that resU,Uαf = resU,Uαg for all α ∈ S.
Let x ∈ U . Then x ∈ Uα for some α ∈ S. So we have

resU,Uαf(x) = resU,Uαg(x)

→ f |Uα(x) = g|Uα(x)
→ f(x) = g(x)

Thus, f = g.

2) (Gluability) To each α ∈ S, let fα ∈ F (Uα) such that resUα,Uα∩Uβfα =
resUβ ,Uα∩Uβfβ (i.e. fα|Uα∩Uβ = fβ |Uα∩Uβ ).

Define f(x) = fα(x) when x ∈ Uα. The condition implies that f is well
defined and continuous on U . By definition of f , we have resU,Uαf = fα.
Furthermore, we have

µ ◦ f(x) = µ ◦ fα(x) = idUα(x) = idU (x)
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So f ∈ F (U).

∴ F is a sheaf on X. �

We now define one more important class of sheaves.

Definition Pushforward Sheaf

Let π : X → Y be a continuous map and F a presheaf on X. The pushfor-
ward of F by π is the collection of maps π∗F (V ) = F (π−1(V )) where V ⊆ Y
is open.

Proposition

The pushforward π∗F defines a (pre)sheaf on Y if F is a (pre)sheaf.

Proof. First we verify that the pushforward defines a presheaf if F is a presheaf.

Presheaf

Let U ⊆ V ⊆W ⊆ Y be open sets.

(1) We have

resU,U = resππ−1(U),π−1(U)
= idF(π−1(U) = idπ∗F(U)

Note: The first equality is between the restriction map in π∗F and the
restriction map in F .

(2) We have that π−1(U) ⊆ π−1(V ) ⊆ π−1(W ). So then

resW,U = resπ−1(W ),π−1(U)

= resπ−1(V ),π−1(U) ◦ resπ−1(W ),π−1(V )

= resV,U ◦ resW,V
Thus, π∗F is a presheaf.

Sheaf

Let U ⊆ X be open and
⋃
α∈S Uα = U an open cover of U .

(1) (Identity) Let f, g ∈ π∗F (U) such that resU,Uαf = resU,Uαg for all
α ∈ S. Then we have that

resπ−1(U),π−1(Uα)f = resπ−1(U),π−1(Uα)g

for all α ∈ S. Observe that
⋃
α∈S π

−1(U) = π−1(U) is an open cover of π−1(U).
Since F is a sheaf, it satisfies the identity axiom and thus, f = g.

(2) (Gluability) To each α ∈ S, let fα ∈ π−1F (Uα) such that
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resUα,Uα∩Uβfα = resUβ ,Uα∩Uβfβ

for all α, β ∈ S.
⋃
α∈S π

−1(U) = π−1(U) is an open cover of π−1(U) and
the fα satisfy the gluability axioms for F (π−1(U)), so there exists an f ∈
F (π−1(U)) = π∗F (U) such that resπ−1(U),π−1(Uα)f = fα for all α ∈ S. This
implies that resU,Uαf = fα for all α ∈ S and so the gluability axiom is satisfied.

∴ π∗F is a sheaf on Y . �

Using the pushforward sheaf, we can give an alternative definition for the
skyscraper sheaf.

Definition Skyscraper Sheaf

Let X be a topological space, p ∈ X, S a set, S the constant sheaf on {p},
and ip : {p} → X the inclusion map. The skyscraper sheaf is the pushforward
of S by ip.

With the above definition, it’s now clear why we used the notation ip,∗S to
denote the skyscraper sheaf.

Stalks/Germs

We now define a central subject in sheaf theory: Stalks and Germs.

Definition Stalks and Germs

Let X be a topological space, p ∈ X, and F a presheaf on X. A germ at p
is a pair (f, U) where U is an open neighborhood of p and f is a section over
U (i.e. f ∈ F (U)). Two germs (f, U) and (g, V ) at p are declared equivalent,
denoted (f, U) ∼ (g, V ), if there exists an open neighborhood W ⊆ U ∩ V of p
such that resU,W f = resV,W g.

The stalk at p, denoted Fp, is the collection of all germs at p. In other
words, Fp is given by:

Fp = {(f, U) | p ∈ U}/ ∼

The definition for stalks and germs of a sheaf is identical.

The type of sheaf that F defines will determine the structure of the stalks.
For example, if F is a sheaf of groups then the stalks will be groups.

Sheaf Morphisms

With any algebraic object, we want to understand the maps between those
objects. Sheaves are no exception. We now define morphisms of sheaves.

Definition Morphism of Sheaves
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Let X be a topological space and F ,G sheaves of sets on X. A morphism
of sheaves from F to G , denoted φ : F → G , is a collection of maps φ(U) :
F (U)→ G (U) defined for each open U ⊆ X such that for any inclusion U ⊆ V ,
we have

resV,U ◦ φ(V ) = φ(U) ◦ resV,U
In other words, the following diagram commutes for all inclusions U ⊆ V :

F (V ) G (V )

F (U) G (U)

resV,U

φ(V )

resV,U

φ(U)

Remark Just as we did for the definition of sheaves, what we’ve actually
defined above is a morphism of sheaves when the sheaves F and G are sheaves
of sets. We can define morphisms of sheaves of any type however. F and
G must be the same kind of sheaf and the maps φ(U) must be appropriate
morphisms matching the type of object that the sheaves define. So if F and G
are sheaves of groups, then the φ(U) must be group homomorphisms. Similarly,
if F and G are sheaves of rings, then the φ(U) must be ring homomorphisms.

To finish our introduction to sheaves, we give one last definition.

Definition Sheaf Hom

Let F and G be sheaves on a space X. For an open set U ⊆ X, define

Hom(F ,G )(U) = {φ : F |U → G |U | φ is a sheaf morphism}

The sheaf Hom of F and G , denoted Hom(F ,G ), is the collection of all
Hom(F ,G )(U).

Proposition
If F and G are sheaves on a space X, then the sheaf Hom of F and G defines
a sheaf on X.

Proof. For a given morphism φ : F → G and open U ⊆ X, define the restriction
of φ to U , denoted φ|U , as φ|U (W ) = φ(W ) for open W ⊆ U . Note that φ|U
defines a morphism of sheaves from F |U to G |U . Let H(U) = Hom(F ,G )(U).
Defining the restriction maps from H(V )→ H(U) by φ 7→ φ|U , we see that the
sheaf Hom is a presheaf on X. Now we check the sheaf axioms.

Let U ⊆ X be open and
⋃
α∈S Uα = U an open cover of U .

(1) (Identity) Let φ, ψ ∈ H(U) such that φ|Uα = ψ|Uα for all α ∈ S. We
want to show that φ(W ) = ψ(W ) for all open W ⊆ U . Set Wα = W ∩ Uα.
Observe that

⋃
α∈SWα = W is an open cover of W . Let f ∈ F (W ). We have

that Wα ⊆ Uα, so
φ|Uα(Wα) = ψ|Uα(Wα)
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for all α ∈ S.
Set g1 = φ(W )(f) and g2 = ψ(W )(f). Then for each α, we have

resW,Wα
g1 = [resW,Wα

◦ φ(W )](f)

= [φ(Wα) ◦ resW,Wα
](f)

= [ψ(Wα) ◦ resW,Wα
](f)

= [resW,Wα
◦ ψ(W )](f)

= resW,Wα
g2

So by the identity axiom of G , g1 = g2. Thus, φ(W ) = ψ(W ) for all open
W ⊆ U and so φ = ψ.

(2) (Gluability) To each α ∈ S, let φα ∈ H(Uα) such that

φα|Uα∩Uβ = φβ |Uα∩Uβ

for all α, β ∈ S. To each openW ⊆ U , we wish to define φ(W ) : F (W )→ G (W )
such that φ defines a morphism of sheaves and φ|Uα = φα for each α ∈ S. Fix
W ⊆ U and a section f ∈ F (W ). Set fα = resW,Wα

f and gα = φα(Wα)(fα)
for each α. Note that Wα ∩Wβ ⊆ Uα ∩ Uβ for any α, β ∈ S, so we have

φα(Wα ∩Wβ) = φβ(Wα ∩Wβ)

Thus,
resWα,Wα∩Wβ

(gα) = resWα,Wα∩Wβ
◦ φα(Wα)(fα)

= φα(Wα ∩Wβ) ◦ resWα,Wα∩Wβ
(fα)

= φβ(Wα ∩Wβ) ◦ resWα,Wα∩Wβ
(fα)

= φβ(Wα ∩Wβ) ◦ resWα,Wα∩Wβ
◦ resW,Wα(f)

= φβ(Wα ∩Wβ) ◦ resW,Wα∩Wβ
(f)

= φβ(Wα ∩Wβ) ◦ resWβ ,Wα∩Wβ
◦ resW,Wβ

(f)

= φβ(Wα ∩Wβ) ◦ resWβ ,Wα∩Wβ
(fβ)

= resWβ ,Wα∩Wβ
◦ φβ(Wβ)(fβ)

= resWβ ,Wα∩Wβ
(gβ)

So then by the gluability axiom in G , there exists a section g ∈ G (W ) such
that resW,Wα

(g) = gα for all α ∈ S. Define φ(W )(f) = g. We now have that
resW,Wα

◦ φ(W ) = φα(Wα) ◦ resW,Wα
for all α ∈ S. To show that φ|Uα = φα,

let W ⊆ Uα be open. Then Wα = W . So

resW,Wα
◦ φ(W ) = φα(Wα) ◦ resW,Wα

→ resW,W ◦ φ(W ) = φα(W ) ◦ resW,W
→ idG (W ) ◦ φ(W ) = φα(W ) ◦ idF(W )

→ φ(W ) = φα(W )

Thus, φ|Uα = φα. We now know that the following diagram commutes:
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F (W ) G (W )

F (Wα) G (Wα)

φ(W )

φ(Wα)

resW,WαresW,Wα

for all open W ⊆ U and α ∈ S. We just need to check that φ actually
defines a morphism of sheaves now. Let W ⊆ V ⊆ U be open sets. We want to
show that the following diagram commutes:

F (V ) G (V )

F (W ) G (W )

φ(V )

φ(W )

resV,WresV,W

First observe that Wα ⊆ Vα ⊆ V . So then the following diagram commutes:

F (V ) G (V )

F (Vα) G (Vα)

F (Wα) G (Wα)

φ(V )

resV,W

resVα,Wα

φ(Vα)

resV,W

resVα,Wα

φ(Wα)

So let f ∈ F (V ). Let g1 = resV,W ◦ φ(V )(f) and g2 = φ(W ) ◦ resV,W (f).
Then we have

resW,Wα
(g2) = (resW,Wα

◦ φ(W )) ◦ resV,W (f)

= φ(Wα) ◦ resW,Wα
◦ resV,W (f)

= φ(Wα) ◦ resV,Wα
(f)

= resV,Wα ◦ φ(V )(f)

= resW,Wα
◦ resV,W ◦ φ(V )(f)

= resW,Wα
(g1)

So by the identity axiom in G, we have g1 = g2. Thus, resV,W ◦ φ(V ) =
φ(W ) ◦ resV,W and φ defines a morphism of sheaves. So the sheaf Hom satisfies
the gluability axiom.

∴ the sheaf Hom is a sheaf. �
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This concludes the section on sheaves.

3 Riemann Surfaces - Basic Definitions

We use much of the following theory on Riemann surfaces and C̆ech cohomology
from Rick Miranda’s book [Mir95].

1-manifolds are defined as sets that can be covered by images of charts
mapping to real space. If one changed the domains of these diffeomorphisms to
the complex plane, we get Riemann surfaces.

We take the mappings associated with zooming into a manifold to get complex
manifolds to be charts φ : U → C where U is an open subset of topological
space X. In order to define Riemann surfaces embedded outside of complex space,
we only require φ to be bicontinuous onto its image as opposed to bi-smooth.

Between charts φ : U → φ(U) and ψ : V → ψ(V ), we ensure compatibil-
ity by requiring that, if U and V are not disjoint, U ∩ V is open in X and
φ ◦ ψ−1 : ψ(U ∩ V )→ C is holomorphic.

3.1 Holomorphic and Meromorphic functions

Definition 3.1. A function f on Riemann surface X to C is holomorphic at
x0 ∈ Xif there exists a chart defined near x0 φ : U → C, where f ◦ φ−1 is
holomorphic near φ(x0).

We note a property of holomorphic functions and an interesting example.

Theorem 3.2. If X is a Riemann surface and f, g are holomorphic functions
on an open subset W of X, then f + g and f · g are holomorphic on X. This
makes the set of holomorphic functions on W a C-algebra on X. That is, this
set of functions is a vector space equipped with product f, g 7→ f · g. We denote
this algebra OX(W ) or O(W ) (suggestively for the theory of sheaves). If g 6= 0
at a point, then f/g is holomorphic at that point.

A similar analogy of definitions can be made for maps with poles, essential
singularities, or removable singularities.
The theorem proving that the set of holomorphic functions on an open subset
W of Riemann surface X is a C-algebra is also true for meromorphic functions.
We can similarly define the order of a zero/pole using the same method.

Definition 3.3. Let f : X → C be a complex-valued function on Riemann
surface X. Then if we have a chart φ : U → C for X at point p, f ◦ φ−1 has a
Laurent series expansion

f ◦ φ−1(z) =
∞∑

n=−∞
cn(z − φ(p))n
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When we deal with nonzero meromorphic functions, the order of f at p, ordp(f),
will be finite and well defined.

4 C̆ech Cohomology

We first apply some notation changes and an equivalent definition of sheaves.
From here, pre-sheaves and sheaves will be denoted by the letters F ,G, and the
restriction maps will be denoted ρUV : F(U)→ F(V ) given V ⊂ U . We will also
often omit restriction maps to make the notation as legible as possible. Given a
pre-sheaf F , we say it satisfies the sheaf axiom over a set X if for a cover U
of an open set U , a section fα ∈ F(Uα) for every Uα ∈ U , and for α, β in the
index set J , ρUαUα∩Uβ (fα) = ρ

Uβ
Uα∩Uβ (fβ), then there exists a unique f ∈ F(U)

restricting to fα on each Uα. Note that this is equivalent to having both the
gluability axiom and the identity axiom hold.

Definition 4.1. Let X be a Riemann surface. Let D : X → Z be a map. D
is called a divisor if for all points except on a discrete set, which we call the
support, D(p) = 0.

Note that if X is compact, we immediately have that the support of D is
finite.

Example 4.2. Define the following sheaf on X: given an open set U, let

OX [D](U) = {meromorphic functions on U, f : U → C∞ | ordpf ≥ D(p) for all p ∈ U}

The above is an abelian group under addition, so OX [D] is a presheaf of groups,
and in fact a sheaf. We verify the sheaf axiom for this presheaf. Suppose we
have an open subset of X, U and a covering {Ui} of U . Suppose on each Ui we
have fi ∈ OX [D](Ui) satisfying agreement on restrictions

ρUiUi∩Uj (fi) = ρ
Uj
Ui∩Uj (fj)

for all i, j. Define a function f : U → C as follows. Given x ∈ U , there exists
Ui 3 x, so define f(x) = fi(x). This is well defined with respect to the choice of
Ui, for if we have Uj 3 x, fi(x) = ρUiUi∩Uj (fi)(x) = ρ

Uj
Ui∩Uj (x). Because at every

x, f can be locally written as fi, f is meromorphic satisfying the order property
necessary for sections in OX [D](U). Hence OX [D] satisfies the sheaf axiom.

We begin by defining C̆ech n-cochains over a sheaf of abelian groups. Assume
all sheaves hence are sheaves over abelian groups.

Definition 4.3. A C̆ech n-cochain for a sheaf F over the cover U is a
collection of sections of F , one over each Ui0,...,in = Ui0 ∩ · · · ∩ Uin . The space
of C̆ech n-cochains for F over U is denoted by C̆n(U ,F)

C̆(U ,F) =
∏

(i0,...,in)

F(Ui0,...,in)
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Note that φ : F → G is a sheaf map, there is an induced map on co-chains

φ : C̆n(U ,F)→ C̆n(U ,G)

for any open covering U sending a cochain (fi0,...,in) to (φ(fi0,...,in))

Definition 4.4. The coboundary operator is the map

d : C̆n(U ,F)→ C̆n+1
(U ,F)

which sends n-cochains (fi0,...,in) to the n+ 1 co-chain (gi0,...,in+1) where

gi0,...,in+1 =
n+1∑
k=0

(−1)kρ(f
i0,...,îk,...,in+1

)

Any n-cochain c satisfying dc = 0 is called an n-cocycle, and the group of
n-cocycles is called Z̆n(U ,F). Any n cochain which is in the image of the d
map is called an n-coboundary, and the n-coboundaries is called B̆(U ,F).

After a long calculation, you can check that d ◦ d = 0.
We have what is called the C̆ech cochain complex

0→ C̆0
(U ,F)→ C̆1

(U ,F)→ C̆2
(U ,F)→ · · ·

Definition 4.5. Cohomology with respect to a cover U is defined using the
inclusion B̆n(U ,F) ⊂ Z̆n(U ,F). The n-th cohomology group H̆n(U ,F) is defined
to be the quotient

H̆n(U ,F) = Z̆n(U ,F)/B̆n(U ,F)

Despite the fact that we just defined cohomology groups above, these are
not the C̆ech cohomology groups. C̆ech cohomology is defined by attempting to
make this cohomology independent of the cover, using something from algebra
called a direct limit. We set up the necessary concepts to define the direct limit.

Definition 4.6. Partially order the set of covers by saying V ≺ U , or V is a
refinement of U , if for every open set Vj from V, there exists an open Ui ∈ U
where Vj ⊂ Ui. This yields a refinement map r : J → I from the index
set J of V to the index set I of U satisfying Vj ⊂ Ur(j). r induces a map
C̆n(U ,F)→ C̆(V,F)

r̃((fi0,...,in)) = (gj0,...,jn)

where gj0,...,jn = fr(j0),...,r(jn)

Lemma 4.7. With the above notation, r̃ induces a map on cohomology groups

H(r) : H̆n(U ,F)→ H̆n(V,F)

12



Proof (Exercise IX.3.G): To do this, we show r̃ sends n-coboundaries to
n-coboundaries and n-cocycles to n-cocycles. It suffices to show that the d map
and r̃ commute. Suppose we have an n-cochain (fi0,...,in) ∈ C̆n(U ,F). We have

dr̃((fi0,...,in)) = d((gj0,...,jn)) = (hk0,...,kn+1)

where

hk0,...,kn+1 =
n+1∑
`=0

(−1)`ρ(g
j0,...,ĵ`,...,jn+1

) =
n+1∑
`=0

(−1)`ρ(f
r(j0),...,r̂(j`),...,r(jn+1))

But this is the rj0 , . . . , rn+1 map corresponding to d(fi0,...,in), so we have shown
that the r̃ and d maps commute. H(r) is independent of the refining map r.
We check this for refining maps r, r′. Define (ignoring the other h map we just
wrote down)

h`0,...,`n−1 =
n−1∑
k=0

(−1)kfr`0 ,...,r(`k),r′(`k),...,r′(`n−1)

d((h`0,...,`n−1)) = (h′`0,...,`n)
where

h′`0...,`n =
n∑
i=0

(−1)ih
`0,...,̂̀i,...,`n

=
n∑
i=0

n∑
k=0,k 6=i

(−1)i+k
{
f
r(`0),...,r(`k),r′(`k),...,r̂′(`i),...,r′(`n) k < i

−f
r(`0),...,r̂`i ,...,r(`k),r′(`k),...,r′(`n) k > i

Grouping terms with common k indices, we get

(−1)k+1
[
(−1)0f

r̂(`0),...,r(`k),r′(`k),...,r′(`n)+· · ·+(−1)k−1f
r(`0),..., ̂r(`k−1),r(`k),r′(`k),...,r′(`n)

+(−1)k+2f
r(`0),r(`1),...,r(`k),r′(`k), ̂r′(`k+1),...,r′(`n)+· · ·+(−1)n+1f

r(`0),...,r(`k),r′(`k),...,r̂′(`n)

]
By the cocycle condition on (fi0,...,in), we get that the collected terms for the
k-th index sum to

(−1)k[(−1)kf
r(`0),...,r̂(`k),,r′(`k),...,r′(`n) + (−1)k+1f

r(`0),...,r(`k),r̂′(`k),...,r′(`n)]

= f
r(`0),...,r̂(`k),,r′(`k),...,r′(`n) − fr(`0),...,r(`k),r̂′(`k),...,r′(`n)

Going back to the sum over the k and i indices, we have

h′`0...,`n =
n∑
k=0

f
r(`0),...,r̂(`k),,r′(`k),...,r′(`n) − fr(`0),...,r(`k),r̂′(`k),...,r′(`n)

= fr′(`0),...,r′(`n) − fr(`0),...,r(`n)

Since the r̃((fi0,...,in)) and r̃′((fi0,...,in)) sections at the `0, . . . , `n index differ by
the section of a coboundary section, we have shown r̃′((fi0,...,in)) = r̃((fi0,...,in)).
�
We can now denote H(r) = HUV : H̆n(U ,F)→ H̆n(V,F) We finally define the
C̆ech cohomology groups:
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Definition 4.8. Partially order the set A of covers of X by refinements, and
for all covers U ∈ A, we have the group H̆n(U ,F). Given V ≺ U , we have a map
HUV : H̆n(U ,F) → H̆n(V,F). We also have for W ≺ V ≺ U , HVW ◦HUV = HUW .
Finally note that every pair of covers have a common refinement. Now this
allows us to define the direct limit over A. Denote

H̆n(X,F) = lim−→
U

H̆n(U ,F)

This is the C̆ech Cohomology of F on X.

Doing some diagram chasing, we get a connecting homomorphism ∆ :
H̆0

(X,G) ∼= G(X)→ H̆1
(X,K).

Proposition 4.9. Let φ : F → G be an onto map of sheaves with kernel K.
Then

0→ K(X) inc−−→ F(X) φX−−→ G(X) ∆−→ H̆1
(X,K) inc∗−−−→ H̆1

(X,F) φ∗−→ H̆1
(X,G)

is an exact sequence.

Here is why this exact sequence can be useful. Suppose you know just
one of the groups in the exact sequence—say H̆1

(X,K). You can then make
conclusions about groups or maps in between, such as that φX is surjective if
H̆1

(X,K) = 0. If we write the exact sequence of sheaves

0→ K → F φ−→ G → 0

we conclude by the first isomorphism theorem that G(X)/φX(F(X)) ∼= H̆1
(X,K)

since φX(F(X)) = ker(∆) and im(∆) = ker(inc∗) = H̆1
(X,K). We calculate

the C̆ech homology groups in the case of the sheaf of C∞ functions. In the
following example, we use a partition of unity on a Riemann surface X.

Proposition 4.10. Let X be a Riemann surface. Then given an open covering
U = {Ui} there exists a set of C∞ functions {ϕi} such that

• for every point p, there exists a neighborhood of p intersecting finitely
many of the supports of ϕj

• for all points p,
∑
i ϕi(p) = 1

• the support of ϕi is contained in Ui for all i

Example 4.11. We show that the cohomology groups H̆n(X,U) are zero for
n ≥ 1 and open coverings U of X. This would then imply the direct limit
H̆n(X, C∞) = 0 for all n ≥ 1. We do this for the case when n = 1; the rest of
the cases involve a similar calculation but with more indices.
Fix an open covering U , and let (fij) be a 1-cocycle for the sheaf C∞ on U .
Consider the C∞ function ϕjfij and extend it by zero outside Supp(ϕj). This
is smooth because it is locally. We can then define this function on Ui. Now
define

gi = −
∑
j

ϕjfij

14



Because each of the terms in the sum are C∞, gi is C∞. Now we have

gj − gi = −
∑
k

ϕkfjk +
∑
k

ϕkfik =
∑
k

ϕk(fik − fjk) =
∑
k

ϕkfij = fij

where the second to last equality follows from the fact that fij is a 1-cocycle.
Hence (fij) = d(gi) is a coboundary. By a similar argument, the n-th cohomology
group for the sheaf E(0,1) of (0, 1) forms also vanishes for n ≥ 1. The book
applies this to calculate the cohomology groups for the sheaf O of holomorphic
functions in the following manner: the short exact sequence (the onto condition
of the second to last map is by Dolbeault’s lemma)

0→ O → C∞ ∂−→ E0,1 → 0

and the resulting exact sequence of cohomology groups

H̆n(E0,1) ∆−→ H̆n+1
(O)→ H̆n+1

(C∞)

can be used to conclude that H̆n(O) = 0 for all n ≥ 2.

Example 4.12. We also show that cohomology groups for skyscraper sheaves
vanish for dimension greater or equal to 1. We first generalize the definition of
skyscraper sheaves to make the calculation appear more natural. Previously,
we defined skyscraper sheaves as the pushforward of a constant sheaf by ip :
{p} → X where p is a single point. We define a skyscraper sheaf to be a totally
discontinuous sheaf on which sections have discrete support. In other words, we
associate a group Gp for each p ∈ X and sections on an open set U are elements
of ∏

p∈U
Gp

where the coordinates at all but a discrete set of points vanish. Note that the
previous example of a skyscraper sheaf is an example of this one. Now let X be
a space and F be a skyscraper sheaf on X. We would like to show n ≥ 1 implies
H̆n(X,F) = 0. It suffices to prove that the cohomology groups corresponding
to each cover U = {Ui} vanish. We also apply a partition of unity argument for
this proof. Totally order the index set of U . Defining

ϕi(p) =
{

1 p ∈ Ui − ∪j<iUj
0 otherwise

This satisfies the conditions for a partition of unity on X, only except that
the functions are integer valued and mostly discontinuous. Note that if f ∈
F(U) is a section, ϕjf is also a section in U. For all but finitely many points,
ϕj(p) · f(p) = ϕj(p) · 0 = 0. Hence ϕj · f is a section on U. Let (fij) be a
1-cocycle for F on U . Consider ϕjfij and extend by zero outside of the support
of ϕj . This extension can then be restricted to Ui. Let gi = −

∑
j ϕjfij , which

is a section on Ui. As before, d(gi) = (fij), so all 1-cocycles of F on U are
coboundaries.

Example 4.13. As a final short remark, we can connect sheaf theory to
algebraic topology in the following sense. The C̆ech cohomology groups of
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the locally constant sheaf are precisely the simplicial cohomology groups for
triangulable spaces. A proof of this fact can be found in Munkre’s book on
Algebraic Topology [Mun93].

5 Conclusions

Sheaf theory is quite deep, and it has connections to many fields. As seen in
the exposition above, we made connections to algebra, complex analysis, and
topology. We directly associated algebra to our sheaves by looking at sheaves
over groups, and in particular abelian groups for C̆ech cohomology. This yielded
cohomology groups, which we could solve for algebraically in exact sequences.
In our examples we examined sheaves on Riemann surfaces, which connect
strongly to complex analysis. We also noted that on triangulable spaces C̆ech
cohomology groups of the locally constant sheaf are the simplicial cohomology
groups from algebraic topology. Our exposition merely scratches the surface of
sheaf theory.
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