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1 The Ring of p-Adic Integers

1.1 p-Adic Integers

Given a natural number p and another natural number x, the base p representation of x is defined as

dn . . . d2d1d0 where

x = d0 + d1p+ d2p
2 + · · ·+ dnp

n =

n∑
i=0

dip
i

and each 0 ≤ di < b is an integer. The existence and uniqueness of such a representation is proven using

the Euclidean Algorithm and induction. As long as n is finite, the series above will converge to the finite

natural number x in the usual sense.

Let us now proceed formally and permit infinite sums of the form

∞∑
i=0

dip
i = d0 + d1p+ d2p

2 + · · ·

Maintaining the same conditions that 0 ≤ di < p and p is a natural number, this infinite sum will not

converge in general. However, when all but finitely many di equal zero, then we observe that the series

converges to some natural number.

We now introduce new terminology to include the formal sums we showed above.

Definition 1.1. A p-adic digit is a natural number d such that 0 ≤ d < p, where p is prime. We call

the sequence of p-adic digits (di)i∈N a p-adic integer, which corresponds to the formal sum
∑∞
i=0 dip

i.

Conventinally, the p-adic representation of (di) is written as

· · · di · · · d2d1d0.

Define Zp as the set of all p-adic integers:

Zp := {(di)i∈N : di is a p-adic digit}
= {. . . di . . . d2d1d0 : di is a p-adic digit}

Note that we will interchangeably use the sum
∑∞
i=0 dip

i, sequence (di), or representation · · · di · · · d2d1d0
to denote a p-adic integer.

There is a natural inclusion of the natural numbers into the p-adic integers N→ Zp: if x ∈ N, then

x =

n∑
i=0

dip
i 7→ (d0, d1, . . . , dn, 0, 0 . . .).
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Observe the left hand side is a finite sum, so it is a natural number but not a p-adic integer. The right hand

side is a p-adic integer since it corresponds to an infinte sum. Hence, all natural numbers are p-adic integers

with finitely many nonzero terms. Some of the important natural numbers are 0 and 1 which map to

0 7→ (0, 0, 0, . . .) and 1 7→ (1, 0, 0, . . .)

for any prime p.

1.2 Arithmetic of p-Adic Integers

Despite the fact that we permit infinitely many digits, we can actually think about arithmetic with p-adic

integers the same way we do with ordinary natural numbers in any base. When adding natural numbers,

we add digit by digit and carry over 1 whenever the digit sum equals or exceeds the base. With natural

numbers, this process terminates since we have finitely many digits. With p-adic integers, we perform this

ad infinitum.

Formally, let · · · a3a2a1a0 and · · · b3b2b1b0 be p-adic integers. Addition is defined digit by digit: if

· · · c3c2c1c0 = · · · a3a2a1a0 + · · · b3b2b1b0, then

c0 ≡ a0 + b0 (mod p)

ci ≡ ai + bi + εi−1 (mod p)

where ai−1 + bi−1 = ci−1 + εi−1p. We call εi−1 the carry digit and it is either 0 or 1. This simply formalizes

the act of carrying over 1 to the left whenever the digit sums equals or exceeds the base. For example, adding

two 5-adic integers looks like:

. . . 3 4 1 2 1

+ . . . 0 3 4 3 2

. . . 4 3 1 0 3

By defining p-adic addition as addition modulo p, it follows that p-adic addition is commutative and asso-

ciative. Furthermore, 0 = · · · 0000p is the additive identity.

The subtraction scheme is similarly defined as we learned in grade school, where we have to borrow a

1 from the right in case the top digit is smaller than the bottom digit. Instead of a carry digit, we have a

borrow digit. This process shows that every p-adic integer has an additive inverse. For example, the 5-adic

inverse of 1 is

. . . 0 0 0 0 0

- . . . 0 0 0 0 1

. . . 4 4 4 4 4

.

We are simply borrowing a 1 from the right column ad infinitum. Hence − · · · 000015 = · · · 444445.

Lastly, recall the process of how we multiply natural numbers in grade school. The exact same process

applies to p-adic integers. For example, multiplying two 5-adic integers looks like

. . . 2 0 4 4 1

× . . . 1 2 3 3 4

. . . 3 3 4 1 4

. . . 2 4 2 3

. . . 4 2 3

. . . 3 2
...

...
...

...
...

...

. . . 4 2 4 4 4
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Since p-adic multiplication boils doing to multiplication modulo p, it is commutative and associative, with

· · · 00001p as the multiplicative identity.

1.3 Algebra of Zp

Observing that addition and multiplication are both defined as such, this suggests Zp has a ring structure.

We can do one better than that, which leads to the following proposition.

Proposition 1.2. Zp is an integral domain.

Proof. The discussion above shows that Zp is a commutative ring. We need to show that Zp has no zerodi-

visors. Suppose α =
∑∞
i=0 aip

i and β =
∑∞
i=0 bip

i are nonzero elements of Zp. Then α and β have a nonzero

digit, say an and bm. The product αβ will have

cn+m ≡ anbm (mod p)

as its (n+m)th digit. As p-adic digits, an and bm are not divisible by p. It follows that cn+m is not divisible

by p. Hence cn+m is nonzero and consequently so is αβ.

Unfortunately, Zp is not a field. Not every p-adic integer has an inverse, but the condition for when there

is an inverse is simply stated:

Lemma 1.3. A p-adic integer (di) =
∑∞
i=0 dip

i is invertible if and only if d0 6= 0.

Proof. Let’s first define reduction modulo p as the map ϕ : Zp → Z/pZ by

(di) =

∞∑
i=0

dip
i 7→ d0 (mod p).

We claim this is a ring homomorphism. Indeed, suppose α = (ai) and β = (bi) are elements of Zp. Then

α 7→ a0 and β 7→ b0. Consider α+β. Then by definition of p-adic addition, the first term is a0 + b0 (mod p).

Thus,

ϕ(α+ β) = a0 + b0 (mod p) = ϕ(α) + ϕ(β).

Note that the addition on the RHS is also modulo p. Next, for αβ, the first term is a0b0 (mod p). Hence,

ϕ(αβ) = a0b0 (mod p) = ϕ(α)ϕ(β).

Lastly, for the multiplicative identity, we have ϕ(· · · 00001) = 1 (mod p). Therefore, ϕ is a ring homomor-

phism.

Using ϕ, we easily prove the forward direction of the lemma. Suppose (di) is invertible. Since ϕ is a ring

homomorphism, ϕ((di)) = d0 must also be invertible. This implies d0 is a unit of Z/pZ, which means d0 6= 0.

Now, in the reverse direction, suppose d0 6= 0. We want to show that (di) is invertible. Recalling that

multiplication is performed digit by digit modulo p, we can find an inverse a0 = d−10 ∈ Z/pZ× such that

d0a0 ≡ 1 (mod p). If we write

(di) =

∞∑
i=0

dip
i = d0 + d1p+ d2p

2 + . . . = d0 + pδ,

where δ ∈ Zp, then multiplying (di) by a0 gives us

(di) · a0 = d0a0 + pδa0 = 1 + tp
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where t = δa0 ∈ Zp. If we show that 1 + tp is invertible, then we will have an inverse for (di) since

(di) · a0 · (1 + pt)−1 = 1 =⇒ (di)
−1 = a0(1 + tp)−1.

By the Binomial Theorem, we can write

(1 + tp)−1 = 1− tp+ (tp)2 − . . . = 1 + b1p+ b2p
2 + . . .

where bi satisfy 0 ≤ bi ≤ p − 1. We can expand every term collect like terms modulo p to obtain these

coefficients. Every term besides 1 must contain a factor of p, so the constant 1 term is never eliminated.

Hence, (1 + tp)−1 is always nonzero, so we have a found an inverse for 1 + tp.

2 The Field of p-Adic Numbers Qp

When working with the usual integers Z, we can construct a field from the ring Z by considering its fraction

field, which we will denote as Frac(Z). This field is precisely the rational numbers Q. The ease of defining

such a field lies in the fact that Z is an integral domain. We have no problems defining multiplication of

fractions since the denominators will never be zerodivisors (or zero, obviously, as a fraction with a zero

denominator makes no sense to begin with).

2.1 Constructing Qp

Since we have shown that Zp is an integral domain, it is perfectly valid to consider its fraction field Frac(Zp).
By analogy to the integers and rationals, we will conventionally define

Qp := Frac(Zp) =

{
α

β
: α, β ∈ Zp, β 6= 0

}
Elements of Qp are called the p-adic numbers. We define addition and multiplication of p-adic numbers

in the usual way:
α

β
+
α′

β′
=
αβ′ + βα′

ββ′
and

α

β

α′

β′
=
αα′

ββ′
.

Likewise, we define the equivalence of fractions in the usual way:

α

β
∼ α′

β′
⇐⇒ αβ′ = βα′.

Now, the elements of Zp are defined as the formal sums
∑∞
i=0 dip

i. It turns out that elements of Qp
also have a similarly nice representation. At the moment, elements of Qp are just fractions of infinite formal

sums. To find a nicer representation, we are going to need a notion of size in Qp. The absolute value in Q
and R is a way to measure size, but in Zp and Qp, it does not help us at all. Elements of Zp are infinite

formal sums that hopelessly diverge from the perspective of real analysis. Putting them into fractions makes

that situation even worse. It is then generally nonsensical to measure the size of a p-adic number. We must

rethink what it means to be an absolute value and measure size.

2.2 Absolute Values and Valuations

Let F be a field and let R≥0 be the set of non-negative real numbers. An absolute value should give some

idea of the size of an element in the field F . So we want to abstract the most essential properties we expect

from an absolute value.

4



Definition 2.1. An absolute value on F is a function

| · | : F → R≥0

satisfying the following properties:

(a) |x| = 0 if and only if x = 0

(b) |xy| = |x||y| for all x, y ∈ F

(c) |x+ y| ≤ |x|+ |y|

We call the absolute value non-archimedean if it satisfies the following property:

(d) |x+ y| ≤ max{|x|, |y|}

Otherwise, we say that the absolute value is archimedean.

While it is conventional to define the absolute value over a field, it suffices to define one over an integral

domain. Properties a) and b) require that we have no zerodivisors, hence why we must have at least an

integral domain and not just any ring. Hence, as we will soon see, we can begin defining absolute values for

Zp and Qp.
Before we get there, let’s see some examples to get used to various absolute values. It is easy to check that

the usual absolute value on R satisfies the first three properties and not the fourth, making it archimedean.

It is convenient to call this one the infinite absolute value, written as | · |∞.

Even more boring than the infinite absolute value is the trivial absolute value over any field F :

|x| =

{
1 x 6= 0

0 x = 0
.

We see that property a) is satisfied by definition. Property b) is easy to see since all nonzero element, and

consequently their products, has absolute value of 1. If either x or y are zero, then the product must then

be zero. For property c), considering the possible cases of x and y, we get 0 ≤ 0 or 1 ≤ 1 when we evaluate

the absolute values. This even implies property d). Hence, the trivial absolute value is, in fact, an absolute

value that is non-archimedean.

To obtain more interesting absolute values that will bring us to closer to defining one over Qp, we

introduce the notion of valuations. We first note that given any n ∈ Z and prime p ∈ Z, we can write

n = pvn′

where gcd(p, n′) = 1. By the Fundamental Theorem of Arithmetic, this factorization, and hence v, is unique.

Of course, v is zero if gcd(p, n) = 1, but that does not detract from that v is still unique. Since v depends

on p and n, we define a new function v = vp(n) that gives the multiplicity of p in the factorization of n.

Definition 2.2. The p-adic valuation on Z is the function

vp : Z→ R

defined as follows: for each nonzero integer n ∈ Z, let vp(n) satisfying

n = pvp(n)n′ with p - n′.

If n = 0, set vp(0) = +∞. We extend vp to Q as follows: if x = a/b ∈ Q, b 6= 0, then

vp(x) = vp(a)− vp(b).
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Definition 2.3. The p-adic valuation extended to Zp is equivalently defined to the p-adic valuation on

Z. That is, let α be a p-adic integer such that the smallest power of p is k > 0:

α =

∞∑
i=k

dip
i = dkp

k + dk+1p
k+1 + . . .

= pk(dk + dk+1p+ . . .)

= pk
∞∑
i=k

dip
i−k

Then vp(α) = k. If k = 0, then vp(α) = 0. As usual, vp(0) = +∞. Hence, the p-adic valuation on Zp gives

the smallest power of p in the expansion.

The valuation on Zp will be useful for us later on, but for now, let’s focus on Z and Q. We can think

of vp as counting function, counting how many divisors of p a number has. If the number is rational, the

valuation is determined by the formula

x = pvp(x) · a
b

p - ab,

i.e. vp counts the multiplicity of p when x is in lowest terms. Let’s see examples to get a feel for p-adic

valuations.

Example 2.4. Compute a) v5(400), b) v7(902), c) v3(123/48), and d) v11(1/22).

(a) Since 400 = 52 · 16, then v5(400) = 2.

(b) We have that 7 - 902, so v7(902) = 0.

(c) We have 123 = 3 · 41 and 48 = 3 · 16, so v3(123) = 1 and v3(48) = 1. Hence, v3(123/48) = v3(123) −
v3(48) = 0.

(d) Lastly, v11(1) = 0 and v11(22) = 1 so v11(1/22) = −1.

So for a fixed prime p, an integer with a higher power of p receives a higher valuation than one with few

powers of p. For rational numbers, the valuation depends on the numerator and denominator. Numbers with

more powers of p in the numerator than the denominator receive a positive valuation, which increases as the

valuation of the numerator. Conversely, if the denominator has a higher valuation than the numerator, the

number receives a negative valuation, which decreases as the valuation of the denominator increases.

The valuation nearly gives us an alternative notion of size in terms of the multiplicity of a prime factor.

Now we say nearly because the valuation does not satisfy the absolute value properties. Most obviously, the

valuation can be negative, but an absolute value must be non-negative. The following two properties of the

valuation also indicate why it is not absolute value but almost:

Lemma 2.5. For all x and y in Q, we have

(a) vp(xy) = vp(x) + vp(y)

(b) vp(x+ y) ≥ min{vp(x), vp(y)}.

Proof. We simply the definition. Suppose x and y are integers. Write x = pvp(x)x′ and y = pvp(y)y′ where

p - x′, y′. Since we can interchange x and y whenever necessary, assume vp(x) ≤ vp(y). Then

xy = pvp(x)x′pvp(y)y′ = pvp(x)+vp(y)x′y′
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where p - x′y′ by Euclid’s Lemma from number theory. This proves part (a). We also have

x′ + y′ = pvp(x)x′ + pvp(y)y′ = pvp(x)(x′ + pvp(y)−vp(x))y′.

Hence, vp(x+y) ≥ vp(x) = min{vp(x), vp(y)}. This completes the proof for integers. For fractions, if x = t/q

and y = r/s, then

vp(xy) = vp

(
tr

qs

)
= vp(tr)− vp(qs)

= vp(t) + vp(r)− vp(q)− vp(s)

= vp

(
t

q

)
+ vp

(r
s

)
.

Similarly,

vp(x+ y) = vp

(
ts+ rq

qs

)
= vp(ts+ rq)− vp(qs)

≥ min{vp(ts), vp(rq)} − vp(qs)
= min{vp(ts)− vp(qs), vp(rq)− vp(qs)}

= min

{
vp

(
t

s

)
, vp

(q
s

)}

This lemma suggests how we can turn the valuation into an absolute value. Property (b) is similar to

the non-archimedean property, which is |x+ y| ≤ max{|x|, |y|}. If we simply reverse the sign, we get

−vp(x+ y) ≤ max{−vp(x),−vp(y)}

Property (a) is a sum while the absolute value requires a product, so let’s just put the valuation into an

exponent, e.g.

pvp(xy) = pvp(x)pvp(y).

Combining the negation and the exponentiation, we arrive at a brand new absolute value.

Definition 2.6. For any x ∈ Q, the p-adic absolute value of x is defined as

|x|p = p−vp(x)

if x 6= 0. Otherwise, set |0|p = 0.

Definition 2.7. The p-adic absolute value on Zp is defined the same way. If α =
∑∞
i=1 dip

i ∈ Zp, then

|α|p = p−vp(α)

where

α = pvp(α)
∞∑

i=vp(α)

dip
i.

Proposition 2.8. The function | · |p is a non-archimedean absolute value.

Proof. Everything follows either by definition or by applying Lemma 2.5.

Let’s see some examples of computing the p-adic absolute value.
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Example 2.9. To better understand how p-adic absolute values compare, let’s fix p = 5 and compute

|16|5, |50|5, |125|5, |1/50|5, and |1/625|5.

|16|5 = 5−v5(16) = 50 = 1

|50|5 = 5−v5(50) = 5−2 =
1

25

|125|5 = 5−v5(125) = 5−3 =
1

125∣∣∣∣ 1

50

∣∣∣∣
5

= 5−v5(1/50) = 52 = 25∣∣∣∣ 1

125

∣∣∣∣
5

= 5−v5(1/125) = 53 = 125

From this example, we can immediately draw some qualitative conclusions. Any numbers with no factors

of p have the same “size” of 1. Numbers with more factors of p in the numerator become smaller in “size”.

However, numbers with more factors in the denominator become larger in “size”.

2.3 p-Adic Number Representation

Using the p-adic valuation and absolute value, the field Qp become less mysterious. Currently, Qp is simply

the set of formal fractions of Zp, but using valuations, we can prove the following proposition:

Proposition 2.10. Any x ∈ Qp can be represented as a series of the form

∞∑
i=m

dip
i = dmp

m + dm+1p
m+1 + . . .+ d0 + d1p+ . . .

where m is an integer and each 0 ≤ di < p is an integer.

Proof. Recall that Qp = Frac(Zp). We want to show that{ ∞∑
i=m

dip
i : m ∈ Z, di ∈ Z, 0 ≤ di < p

}
= Frac(Zp).

For m ≥ 0, the series is just a p-adic integer, and since Zp ⊂ Qp, we have nothing to prove there. Suppose

m < 0. Then the series is written as

∞∑
i=m

dip
i = dm

1

p−m
+ dm+1

1

p−(m+1)
+ . . .+ d0 + d1p+ . . .

= dm
1

p−m
+ dm+1

1

p−(m+1)
+ . . .+

∞∑
i=0

dip
i

Since m < 0, it follows that each p−m ∈ Zp. Furthermore, since each di ∈ Zp, each term that is not part

of the infinite series has the form α/β where α, β ∈ Zp, i.e. they belong to Frac(Zp). The infinite series is

a p-adic integer, which corresponds to α/1 in Qp where α ∈ Zp. Hence, we have a sum of elements in Qp,
which proves that { ∞∑

i=m

dip
i : m ∈ Z, di ∈ Z, 0 ≤ di < p

}
⊆ Frac(Zp).
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In the other direction, suppose α/β ∈ Qp is a p-adic number, where α, β ∈ Zp. Suppose that vp(α) = n and

vp(β) = k. Recall that we already defined valuations on Zp in Definition 2.3. Then, α and β are written as

α = pn
∞∑
i=n

aip
i−n

β = pk
∞∑
j=k

bjp
j−k

By Lemma 1.3, the summation factors of α and β are invertible p-adic integers since they both have nonzero

constant terms an and bk. Hence, we can write α/β as

α

β
=

pn
∞∑
i=n

aip
i−n

pk
∞∑
j=k

bjpj−k
= pn−k

( ∞∑
i=n

aip
i−n

)pk ∞∑
j=k

bjp
j−k

−1 = pn−ku

where u is the product of the two invertible p-adic integers. Observe that u is an invertible p-adic integer,

i.e. it has a non-zero constant term, i.e. vp(u) = 0. If n ≥ k, then pn−k is also a p-adic integer, i.e. α/β is

p-adic integer with the expansion as desired. Similarly, if n < k, then we shift the powers in the expansion

of u down by k − n so that we have negative indices with negative powers of p, as desired. Thus,{ ∞∑
i=m

dip
i : m ∈ Z, di ∈ Z, 0 ≤ di < p

}
⊇ Frac(Zp).

So far, we have only defined them over Q and Zp. Using this proposition, it is a trivial matter to extend

the p-adic valuation and absolute value to Qp.

Definition 2.11. The p-adic valuation extended to Qp is defined as follows: if x =
∑∞
i=m dip

i where m is

the smallest integer with non-zero coefficient, then

vp(x) = m.

Definition 2.12. The p-adic absolute value extended to Qp is defined as follows: if x =
∑∞
i=m dip

i where

m is the smallest integer with non-zero coefficient, then

|x|p = p−vp(x) = p−m.

We also have representation of p-adic numbers as strings of numbers in the right-to-left convention.

Definition 2.13. The p-adic representation of the p-adic number x ∈ Qp where

x =

∞∑
i=m

dip
i = dmp

m + . . .+ d−1p
−1 + d0 + d1p+ d2p

2 + . . .

and the integer m < 0 is given by

x = · · · d2d1d0 . d−1 · · · dm

Example 2.14. Suppose we want the 5-adic representation of 7
15 . In Zp, using the summation notation of

p-adic integers, we have

7 =

∞∑
i=0

ai · 5i where (ai) = (2, 1, 0, 0, . . .)

15 =

∞∑
i=0

bj · 5j where (bj) = (0, 3, 0, 0, . . .).
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So in Qp, 7/11 corresponds to the fraction of p-adic integers

α

β
=

∞∑
i=0

ai · 5i

∞∑
j=0

bj · 5j

where α =
∑∞
i=0 ai · 5i and β =

∑∞
i=0 bj · 5j . The previous theorem guarantees we have a nice summation

representation. To obtain it, we use the same technique as the proof. We first observe that v5(α) = 0 and

v5(β) = 1. By Lemma 1.3, α is invertible in Zp since it has a nonzero constant term, but β is not. Using the

fact that v(β) = 1, we can write

β = 5

∞∑
j=1

bj · 5j−1

= 5(3 + 0 · 5 + 0 · 52 + . . .)

where the sum of the RHS is invertible in Zp. Thus,

α

β
=

∞∑
i=0

ai · 5i

5
∞∑
j=1

bj · 5j−1
= 5−1

( ∞∑
i=0

ai · 5i
) ∞∑

j=1

bj · 5j−1
−1 .

It remains to find the inverse of
∑∞
j=1 bj · 5j−1 = 3 + 0 · 5 + 0 · 52 + . . .. To do this, we appeal to its p- adic

representation as · · · 0035, that is 3 in the ‘ones’ position and 0 in all other positions ad infinitum. We need

a p-adic integer that, when multiplied by · · · 0035, gives the identity · · · 0015. Since we are working modulo

5, it is simple to do this digit by digit. We first find a digit that when mutliplied by 3 gives 1 modulo 5.

Then the remaining digits must multiply in a such a way that produces 0. In practice, we apply grade school

multiplication while keeping modulo 5 in mind.

. . . 0 0 0 0 3

× . . . 1 3 1 3 2

. . . 0 0 0 1 1

. . . 0 0 1 4

. . . 0 0 3

. . . 1 4
...

...
...

...
...

...

. . . 0 0 0 0 1

Hence (· · · 003)−1 = · · · 131325. Finally, we simply multiply the p-adic integers to obtain α/β. Writing∑∞
i=0 ai · 5i as · · · 00125, we multiply it to (· · · 003)−1 = · · · 131325 in the usual way:

. . . 1 3 1 3 2

× . . . 0 0 0 1 2

. . . 3 1 3 1 4

. . . 3 1 3 2

. . . 0 0 0

. . . 0 0
...

...
...

...
...

...

. . . 1 3 1 3 4

10



Thus, we arrive at the 5-adic representation of 7/15:

α

β
= 5−1(· · · 13134)

= 5−1(4 · 50 + 3 · 51 + 1 · 52 + 3 · 53 + 1 · 54 + · · · )
= 4 · 5−1 + 3 · 50 + 1 · 51 + 3 · 52 + 1 · 53 + · · ·

i.e.
7

15
= · · · 1313.45

2.4 Algebra of Qp

Using the p-adic absolute value, we can explore the algebra of Qp more deeply. This sections serves to simply

state interesting results regarding the algebra of Qp.

Proposition 2.15. Let F be a field and | · | be a non-archimedean absolute value. The set

O = {x ∈ F : |x| ≤ 1} ⊂ F

is a subring of F , and it is called the valuation ring of | · |. The set

B = {x ∈ F : |x| < 1} ⊂ O

is an ideal of O, and it is called the valuation ideal of | · |. Furthermore, B is a maximal ideal in O, and

every element of the complement O − B is invertible in O.

Definition 2.16. A ring that contains a unique maximal ideal whose complement consists of invertible

elements is called a local ring.

It follows from that definition above that a valuation ring is a local ring.

Proposition 2.17. The ring of p-adic integers is the valuation ring

Zp = {x ∈ Qp : |x|p ≤ 1}

which implies that Zp is a local ring.

This proposition is consistent with every we have seen so far. Any integer with no factor of p has absolute

value of 1, and integers with factors of p have absolute value less than 1 and decreases as the number of

factors of p increases.

Conversely, fractions, in lowest terms, whose denominators have a factor of p have absolute value greater

than 1. An interesting implication of this proposition is that fractions with no factors of p in the numerator

and denominator must be p-adic integers, since their valuation is 0 and absolute value is thus 1. We briefly

saw this earlier when inverting p-adic integers with nonzero constant terms, e.g. when we inverted · · · 00035
to get 1/3 = · · · 131325 in the previous example.

Since Zp is a local ring, it must have a unique maximal ideal by definition. The following proposition

describes what this ideal is.

Proposition 2.18. The maximal ideal of Zp is pZp = {x = Qp : |x|p < 1}.

We also know that Zp is a valuation ring, which we used to deduce it is a local ring. Thus, Zp is also its

valuation ideal, and it consists of the multiples of p. By Proposition 2.15, it follows that Z×p = Zp − pZp.
This is consistent with Lemma 1.3, since multiples of p have zero constant term, i.e. they are not invertible.

Invertible integers, on the other hand, have a constant term and cannot be divisible by p.

This final corollary should not be a surprise given our understanding of the representation of a p-adic

number in Qp.
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Corollary 2.19. Qp = Zp[1/p], that is, Qp is obtained by adjoining the inverse of p to Zp. In other words,

Qp is the kernel of Zp[x]→ Qp sending x 7→ 1/p = p−1.

3 Brief Look into p-Adic Analysis

In previous examples, we put an equality between a clearly finite number and a clearly divergent series,

e.g. 1/3 = · · · 131325. Assuming the corresponding sequence of digits is never eventually zero, then our

knowledge of real analysis tells us this infinite should hopelessly diverge. But divergence is simply a matter

of perspective.

In the last couple of sections, we introduce new tools, that is a new absolute value, that we claim fixes

our divergent situation. Let’s recall the definition of convergent and Cauchy sequences. Suppose we have a

sequence (xn) in a normed space X, i.e. X has an absolute value.

Convergent : The sequence (xn) converges to x ∈ X if, for ε > 0, there exists N ∈ N such that when-

ever n > N , |xn − x| < ε.

Cauchy : The sequence (xn) is Cauchy if, for ε > 0, there exists N ∈ N such that whenever n,m > N ,

|xn − xm| < ε.

In general, all convergent sequences are Cauchy, but not all Cauchy sequences are convergent. In the

case of Q, we know from real analysis that Q is not complete, i.e. not all Cauchy sequences in Q converge.

To fix this, we construct the real numbers R as a completion of Q, and one way of doing this is defining

equivalences classes of Cauchy sequences in Q as way to plug the “holes”. The key part of this construction

is that it depends on the absolute value. The choice of absolute value thus dictates what elements of the

completion look like. What if we pick a different absolute value?

Proposition 3.1. Qp is a completion of Q with respect to the p-adic absolute value | · |p.

This is an amazing fact since our hopelessly divergent sums now have a chance at being Cauchy and

converge in a meaningful way. Let’s look at an example to illustrate this fact.

Example 3.2. We know from the previous example that 7/15 = · · · 1313.45. Let’s consider the sequence of

5-adic numbers (0.45, 3.45, 13.45, 313.45, 1313.45, . . .). We claim this sequence is Cauchy with respect to | · |5
and hence converges. To illustrate this claim concretely, let’s compare |13.45−3.45|5 with |1313.45−313.45|5:

|13.45 − 3.45|5 = |10.05|5 = 5−v5(10.0) = 5−1 =
1

25

|1313.45 − 313.45|5 = |1000.05|5 = 5−v5(1000.0) = 5−3 =
1

125

The distance between terms of the sequences decreases as we move forward. For ε < 1/5k, we just need to

choose xi and xj in the sequence such that v5(xi − xj) > k. This means the first k terms of xi and xj are

the same, so the subtraction would leave 5k+1 as the lowest power of 5. As k increases arbitrarily, the 5-adic

absolute value then decreases arbitrarily, i.e. the sequence converges.

Equipped with the fact that all Cauchy sequences in Qp are convergent, we can begin building another

field of analysis analogous to real analysis. As the section title suggests, this is known as p-adic analysis. It

is known that the p-adic absolute value induces a metric on Qp so we can talk about the topology of Qp and

work our way towards the notion of limits, continuity, differentiation, etc.

We call a field equipped with a non-archimedean absolute value an ultrametric space. Since the p-adic

absolute value is non-archimedean, then Qp is an ultrametric space. The topology and analysis on Qp is
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then much more exotic compared to real analysis, where the absolute value is archimedean. For example, all

triangles in an ultrametric space are always isosceles. Every point in an open and closed ball is a center of

that ball, which is counterintuitive to our geometric picture of ball that has a single center. Every ball, open

or closed, is both open and closed. These are just a few of the interesting facts about Qp, and ultrametric

spaces in general, that lead to the strange and exotic world of p-adic analysis.
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