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1 Introduction

Music and math have always shared a deep rooted connection with each other.
In many ways, math is the hidden language behind music, describing how we
hear certain sounds in relation to another and even how those sounds are in-
terpreted by our brains in the first place. For example, consider the twelve
pitch-classes generated by the twelve distinct pitches present in Western Music
Theory, in which each pitch is assigned a letter from A to G (with possible sharp
and flat accidentals), based on the frequency of the respective sound-wave in
Hz. Notes with twice the frequency as another note are considered to be in the
same pitch-class and thus identified with the same letter symbol. In this way,
a sound-wave with a frequency of 440 Hz would be labeled A, and any halving
or doubling of that frequency value such as 220 Hz or 880 Hz would also result
in an A pitch, being one octave below or above the original, respectively. This
is precisely because our ears hear sounds on a base 2 logarithmic scale!

Furthermore, using equal tempered tuning, the difference between any two
pitches that are n semitones apart expressed as a ratio is exactly equal to 12

√
2
n
.

The value of 12
√

2 is chosen because of its innate tendency of it’s powers to
be within 0.1% accuracy of relatively simple rational numbers (i.e. those with

small numerators and denominators). For example, 12
√

2
5 ≈ 1.3348 ≈ 4/3,

12
√

2
7 ≈ 1.4983 ≈ 3/2. The resulting consonance or dissonance of the two pitches

played against each other can be expressed as a ratio between the two frequen-
cies, where those with smaller integer values can be seen as more harmonious
than those with relatively larger values. In this way, two notes that are seven

semitones apart will have a frequency ratio of 12
√

2
7 ≈ 3/2 which will sound

very harmonious (and is often called a perfect fifth) while two notes that are six

semitones apart will result in a frequency ratio of 12
√

2
6 ≈ 45/32 which sounds

very dissonant (and is often referred to as a tritone). When any two distinct
pitches are played together, our brain picks up on the polyrhythms created by
the two frequencies of sound-waves expressed by these ratios. Naturally, those
polyrhythms that are easier to interpret corresponding to lower frequency ratios
will sound better than those with high ratios. The consonance or dissonance
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of two different pitches can alternatively be described with the harmonic over-
tone series, which details the natural phenomenon of multiple overtones being
created and heard at the same time any single pitch is made. Each of those
overtones are equal to 1/nth of the frequency of the original pitch for n going to
infinity, with the volume of each overtone generally decreasing as n increases.
In this way, pitches that share one or more overtones sound more harmonious,
and it is easy to see that pitches which are relatively small ratio frequencies of
other pitches will naturally share more audible overtones. In fact, this is exactly
why the harmonic series represented by

∑∞
n=1 1/n is called the harmonic series!

Again, the twelfth root of two is particularly powerful as a generator for the
given pitches of a pitch class due to its close accuracy to the resulting ratio
frequencies created by the harmonic overtone series.

This is all very interesting, but the math we’ve been exploring has been
pretty simple thus far. In order to identify some of the more fundamental ideas
of music theory from a mathematical perspective, we must dive into the world
of group theory. Our earlier look at the twelve distinct pitch classes created
through equal tempered tuning proves quite useful in this regard, as we can
now view these twelve pitch classes as isomorphic to the set Z/12. Setting the
pitch C be equal to zero and each resulting pitch to be equal to the amount of
half-steps (or semitones) needed to traverse to that pitch going up starting from
C, we can view movement up and down the chromatic scale as addition and
subtraction by half-steps to the respective note modulo 12. In this way, we can
look at the various changes of note or chord shapes a chord can take as actions
on this set and gain insight to some powerful math at work behind the scenes.
First, however, we must make some formal definitions.

2 Group Theory

Definition For G a group with identity e and X a set, a (left) group action is
a function G×X → X, (g, x) 7→ g.x such that

• e.x = x

• g.h.x = (gh).x

A right group action is defined similarly as a function X×G→ X, (x, g) 7→ x.g
such that

• x.e = x

• x.g.h = x.(gh)

.
Definition A transitive group action is a group action with the additional
property that for every pair of elements x, y ∈ X, there exists g ∈ G such that
g.x = y.
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Definition A faithful group action is a group action in which for every set of
maps gx = hx, g, h ∈ G, g = h.

Definition A simply transitive group action is a group action that is both
transitive and faithful.

Definition The orbit of a group action acting on an element s ∈ S is the set of
all g.s such that g ∈ G. In this way, it is clear to see that any transitive group
action has only one orbit which consists of all the elements s ∈ S, since any
arbitrary element s ∈ S can be sent to any other element s′ ∈ S

Definition A left action of G on itself is a group action G×G→ G, (g, x) 7→ g.x.
Of particular note, this group action is always simply transitive.

Definition A right action of G on itself is a group action G×G→ G, (x, g) 7→
x.g. As before, these group actions are also always simply transitive.

Definition The centralizer of a subgroup H of a group G is the set of all group
actions g ∈ G such that gh = hg ∀h ∈ H.

Definition Two groups are called dual if they are both centralizers of the other.

One important theorem from group theory that allows us to relate any group
G to a subset of the Symmetric Group Sym(G) is Cayley’s Theorem, which is
stated and proved below.

Theorem (Cayley’s Theorem) For any group G, there is an isomorphism
between G and some subset H ⊆ Sym(G). I.e., G ∼= H.

Proof. First consider the left group action of G on itself, G×G→ G, (g, x) 7→
g.x. We will show that this correspondence is bijective. Let g, g′ ∈ G such that
(g, x) = (g′, x) ⇐⇒ g.x = g′.x ⇐⇒ g = g′. This shows that the group action
is injective. Now consider the function (g, (g−1, x)) = g.g−1.x = x, so the group
action has a preimage and is thus surjective. This shows that any group action
on itself is bijective, or in other words it is a permutation on the set underlying
the group SG. We can now consider the mapping φ : G → Sym(G) defined
by that permutation representation. By examining the kernel of φ, we see that
∀g ∈ kerφ, g.e = ge = g = e, i.e. kerφ is trivial so φ is injective. This is
equivalent to saying that φ is faithful. We now note that Imφ = H ⊆ Sym(G),
and our final result comes from the First Isomorphism Theorem, which tells us
that G/kerφ ∼= Imφ, or equivalently, G ∼= H.

Though not as well known and less broad in scope, there is one other theorem
of Cayley’s that will have important significance in our discussion of music and
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mathematics. The theorem will be stated here, but the proof will be held until
later in our discussion.

Theorem (Cayley’s Dual Theorem) If G is a group, then we obtain dual
groups via the two embeddings of G into Sym(G) as left and right actions of G
onto itself. All dual groups arise in this way.

Okay, so we’ve got some real formal mathematical ideas here now, but these
definitions are all pretty abstract. How does this all tie into music? It is hear
that our discussion of the 12 pitch classes as equivalent to Z/12 becomes truly
useful. Viewing each of the pitch class integers as twelve equidistant points on a
circle (similar to a clock’s hour figures), we can see the shape that results from
connecting these points outer perimeter is a dodecagon. Then, by examining the
24 possible symmetries of that dodecagon, which include the 12 rotations from
one point to a proceeding point and the 12 lines of symmetry we can flip the
dodecagon across, we get the dihedral group D12 of order 24! Great, so we’ve
got a group, but how does it act on itself? And what do these group actions
have to do with music? Once again we must dive into some more definitions,
but this time we get to look not only through a mathematical lens but also
through a musical one as we tie in some ideas from western music theory.

3 Major and Minor Triads and the T/I group

Definition A major third is a musical term used to express two pitches that
are four semitones apart. A minor third describes two pitches three semitones
apart.

Definition A major triad is the stacking of one minor third on top of a major
third using only three notes. Similarly, a minor triad is a major third stacked
on top of a minor third.

Example Represented mathematically, a C-major triad (commonly denoted by
an upper case C) would consist of the root note C, the major third note E four
semitones above the root, and the minor third note G three semitones above
the major third E. In our translation to the integers modulo 12, this would
correspond to the set of integers {0,4,7}. One example of a minor triad can be
seen in the f-minor triad (minor triads typically have lower case pitch classes as
symbols) which is constructed from the root F, the minor third note A[ three
semitones above the root, and the major third note C four semitones above the
minor third A[. Our corresponding representation in the integers modulo 12
defined by our mapping earlier would give {5,8,0}.

Definition A transposition is a function T : Z/12→ Z/12 defined by Tn(x) =
x+n mod 12. Transpositions of a major or minor triad involve the movement of
each of it’s individual notes up or down a set amount of semitones. Transposed
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major triads will always be major, and transposed minor triads will always be
minor.

Example The transposition T2 on the C-major interval involves transposing
each note up two semitones. The resulting triad is a D-major triad, and is
represented as a set in Z/12 as {2, 6, 9} = {D,F],A}. Notably, A transposition
function Tn can be seen as a rotation of the dodecagon by n

12 of a turn.

Definition An inversion is a function I : Z/12 → Z/12 defined by In(X) =
−x+ n mod 12. An inversion In moves a major triad to the minor triad 5 + n
mod 12 semitones above the root, and moves a minor triad to the major triad
7 + n mod 12 semitones above the root (or 5 − n mod 12 semitones below the
root, since 7 = −5 mod 12). Inversions of major triads will always be minor
and inverted minor triads will always be major.

Remark It should be noted that the inversion function described here is dis-
tinctly different from the of an inversion in the typical music theory sense, which
involves the rearrangement of a chord’s notes to have a different root note de-
fined by the degree of the inversion.

Example The inversion I0 of a C-major triad involves flipping the coordinates
about the 0 - 6 axis. The resulting triad will have its values {0,4,7} mapped
to {0, 8, 5} = {C,A], F} = {F,A], C}, making it an f-minor triad. The same
inversion on that f-minor triad would result back in the original C-major triad.
In this sense, an inversion function can be seen as a rotation of the dodecagon
by n

12 of a turn followed by a flip over the resulting vertical axis.

The importance of these transposition and inversion functions becomes ap-
parent when we consider the set of all of them as a group T/I. Of note, there are
24 elements in this group, since there are 12 transpositions and 12 inversions.
Furthermore, since In = Tn ◦ Io, and considering that Tn has order 12 and I0
has order 2, we see that T/I is generated by {T1, I0}. What’s more, through
the use of it functions, it acts (from the left) on the group S of all major and
minor triads, which is also of order 24 (12 major triads and 12 minor triads).
Hmm, interesting ... but that’s not all! If we consider the fact that Tn can send
any major or minor triad to another respective major or minor triad uniquely,
and that In can similarly send any major triad uniquely to a minor triad or vice
versa, we notice that the T/I group acting on the group S is simply transitive!
This is very interesting! We’ll come back to this later.

4 The PLR Group

Definition A function P : S → S defined by P (y1, y2, y3) = Iy1+y3
(y1, y2, y3) is

called a parallel function. This function maps a major triad to the corresponding
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minor triad of the same pitch class and vice versa. For example, P (0, 4, 7) =
(7, 3, 0) ⇐⇒ P{C,E,G} = {C,E[,G} ⇐⇒ P (C) = c.

Definition A function L : S → S defined by L(y1, y2, y3) = Iy2+y3
(y1, y2, y3)

is called a leading voice exchange function. This function maps a major triad
to the minor triad four semitones above the root of the major triad and sends
a minor triad to the major triad four semitones below the root. For example,
L(0, 4, 7) = (11, 7, 4) ⇐⇒ L{C,E,G} = {E,G,B} ⇐⇒ L(C) = e.

Definition A function R : S → S defined by R(y1, y2, y3) = Iy1+y2
(y1, y2, y3)

is called a relative function. This function maps a major triad to the minor
triad three semitones below the root of the major triad and sends a minor triad
to the major triad three semitones above the root. For example, L(0, 4, 7) =
(9, 0, 4) ⇐⇒ L{C,E,G} = {A,C,E} ⇐⇒ L(C) = a.

Remark Looking at these functions geometrically, the axis in which the pitches
are flipped over is not always the vertical axis, as was the case in our earlier
defined inversion function. Instead, each function P , L, and R have a unique
axis of rotation, being the lines spanned by y1+y3

2 to y1+y3

2 +6, y2+y3

2 to y2+y3

2 +6,

and y1+y2

2 to y1+y2

2 + 6, respectively.

By examining these functions more closely, we can make a couple important
distinctions about the PLR group. Firstly, we note that we can generate the
function P using the functions L and R. We see this by example with the
major C chord. By alternatively applying R and L, we see that any starting
major triad will be mapped to the minor triad three semitones below the root,
which will then be mapped to the major triad four semitones below that root.
This corresponds to moving a major triad seven semitones below the root in
total for each iteration of R and L used. With this in mind, applying R and L
three times each in succession would map a C major triad to the major triad
7 ∗ 3 = 21 ≡ 9 mod 12 below it, corresponding to E[ major. This can be seen
as (LR)3(C) = E[. By applying the R function one more time, we get the
relative minor of E[, which is another three notes below the root, resulting in
c minor! Thus the PLR group is generated by L and R alone. Looking at this
relationship further, we can see that (LR) has order 12 (since it maps major
triads to major triads seven semitones below the root and maps minor triads to
minor triads seven semitones above the root and since 7 and 12 are coprime).
Thus, by routinely alternating between L and R for any starting given triad, we
generate the whole group of major and minor triads of order 24! Even better,
through this process, we have a unique mapping from any one major or minor
triad to any other major or minor triad, so the PLR group is simply transitive,
acting on the dihedral group of order 24 on the right!
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5 Dual Groups

We now return to the earlier theorem of Cayley’s, which states that dual groups
are formed by a group acting on itself from the left and the right. The proof
follows below.

Proof. Let G1 and H1 be the two groups formed by an arbitrary group G acting
on itself from the left and the right. Let g ∈ G1 and h ∈ H1 be two group
actions acting on an element x ∈ G. Now suppose G1 and H1 are not dual, i.e.,
g.(x.h) 6= (g.x).h ⇐⇒ gh−1x 6= h−1gx. Multiplying each side by g−1, we get
g−1gh−1x 6= g−1h−1gx ⇐⇒ x.h 6= g.x.hg ⇐⇒ xh 6= xh which leads to a
contradiction. Thus G1 and H1 are dual.

Using this framework, we can now see that the T/I group and the PLR
group are dual since they are both of order 24,simply transitive, and act on the
group G from the left and right. In the context of these groups, this means
that if you apply a transposition/inversion along with any element from the
PLR group, it would not matter what order you applied the funtions in as they
would result in the same ending chord. That’s actually really cool! It was very
interesting learning about all the in-depth math behind musical concepts such
as chord changes and melodic motion. Math really is the universal language of
the universe!
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