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Introduction

Cryptography, or cryptology, is the practice and study of techniques for secure
communication in the presence of third parties called adversaries. Cryptography
has a very prominent position in our modern world. But secure communication
between humans is not the only place where we see it’s application. From
securing financial transaction by encrypting between machines to producing
new types of currency such as cryptocurrency, cryptography is part of ever
modern humans lives. There are also efforts to encrypt DNA [18] for the privacy
conscious individuals which is different from using DNA for creating encryption
system [17].

History

Figure 1: Recon-
structed Scytala
[14]

”It is believed that the oldest known text to contain
one of the essential components of cryptography, a
modification of the text, occurred some 4000 years ago
in the Egyptian town of MENET KHUFU where the
hieroglyphic inscriptions on the tomb of the nobleman
KHNUMHOTEP II were written with a number of
unusual symbols to confuse or obscure the meaning of
the inscriptions.” [16]. There were also several other
systems like the Spartian scytala used to send secret
messages.

David Kahn notes in The Codebreakers that
modern cryptology originated among the Arabs, the
first people to systematically document cryptanalytic
methods.Al-Khalil (717–786) wrote the Book of Cryp-
tographic Messages, which contains the first use of permutations and combina-
tions to list all possible Arabic words with and without vowels.[13]

Caesar shit cypher is one of the simpler and fairly well known encryption
techniques. It is name after Julius Caesar. [20]. This technique is still used in
ROT13.[13]

Another example of a cypher system is the Enigma used by the Germans
during World War II that wrecked havoc by providing a secure method of com-
munication for them for a long time. The cypher system was complex [12]
enough that a simple brute force effort was not enough to crack this system and
required the invention of sophisticated machinery. Although a lot of theoretical
groundwork was done by several Polish mathematicians [19] , the final machine
was constructed in USA with the help of Alan Turin et al [2].

Example 1

Definition. A cryptographic system (or cypher system) is a model that allows
for obfuscation of data (encryption) such that it can only be un-obfuscated (de-
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cryption) in presence of certain information about the system.[11]

Definition. Encryption is a method of taking plain-text (data we don’t want
certain people to see) and turning it into cypher-text (data from which the orig-
inal information is hard to extract without special information about the system
such as a key.)

Figure 2: Encryption

Encryption can also be thought of as a func-
tion whose domain is plain-text and whose co-
domain is a set of symbols as seen in figure 2.

E : W → S

where E is the encryption function, W a set
of words (it could be numbers, letters or even
symbols), and S a set of symbols.

Definition. Decryption is a method of of get-
ting plain-text back from a cypher-text.

Definition. In symmetric-key cryptography, a
key is the shared knowladge between parties and
is required to encrypt and decrypt messages.
The keys needed to encrypt or decrypt might
be different or same knowladge.

The process generally requires some knowledge about the system for example
a decryption key. Decryption can be thought of as the inverse to the encryption
function. But this is not necessarily true as a bijective E actually makes an
encryption system weaker to adviserial attacks.

Figure 3: Shift cypher
[14]

An example of a crypto-system [11] called
Caesar shift can be constructed using set
of English alphabets P as the domain and
codomain C of a shift function E that does
the encryption.

En : P → C

where n ∈ {0, .., 25} is the distance of the
shift. For example n = 1 means each alphabet
gets shifted by one, i.e a is replaced by b, b
by c and so on.

E1(a) = b;E1(hello) = ifmmp

In this system, E is a bijective function hence E−1 is a function that shifts
the alphabet backward.

E−1
n : C → P

This is a simple crypto-system that it can be done by hand on a piece of
paper. But it can also be done with a computer by encoding the alphabets in a
way that we can add and substract shifts. For example, using ASCII encoding
standard.[? ]
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Algebra

Definition. A group is a set G together with a binary operation

◦ : G×G→ G

that obeys the following axioms.

• Closure: If a, b ∈ G then a ◦ b ∈ G

• Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c)

• Identity: There exists an element e ∈ G such that e ◦ a = a ◦ e = a for all
a ∈ G

• Inverse: For all a ∈ G exists a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e

Definition. A symmetric group Sn of degree n is the group of all permutation
on n symbols.

We see that when we consider all possible shifts of alphabets in our shift
cypher, there is an underlying group structure of permutations. With this
knowledge, it is possible to add arbitrary symbols to the domain of the function
and create different variations in shift cypher. Algebraically, we are dealing with
modular arithmetic in a Z/26Z

Definition. Fix a group G and an element g. The Discrete Logarithm Problem
(DLP) for G is : Given an element h in the subgroup generated by g, find an
integer m satisfying

h = gm

The smallest integer m satisfying this condition is called the logarithm (or index)
of h with respect to g, and is denoted

m = logg(h)

The DLP is used as the underlying hard problem in many cryptographic
constructions, including key exchange, encryption, digital signature and hash
functions.

Definition. An elliptical curve is a smooth, projective, algebriac curve of genus
one which there is a specified point O.

Informally, an elliptic curve is the set of points satisfying

y2 = x3 + ax+ b

Definition. The group on an elleptic curve which has been transformed to form

y2 = x3 + ax+ b
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is a set of K-rational points, including the single point at infinity. The group
law (addition) is defined as follows: Take 2 K-rational point P and Q. Now
’draw’ a straight line through them and compute the third point of intersection
R (also a K-rational point). Then

P +Q+R = 0

gives the identity point at infinity. Now find the inverse of R, which can be done
by setting R = (a, b) giving −R = (a,−b). [10]

Definition. Let G and H be groups. A homomorphism is a structure preserving
map φ : G→ H such that:

φ(g1 ◦ g2) = φ(g1) ◦ φ(g2)

i.e the group operation is preserved.

Definition. A trapdoor function[9] is a collection of one-way functions fk :
Dk → Rk(k ∈ K), in which all of K,Dk,Rk are subsets of binary string 0, 1∗,
satisfying the following conditions:

• There exists a probabilistic polynomial time (PPT) sampling algorithm
Gen such that Gen(1n) = (k, tk) with k ∈ K ∩0, 1n and tk ∈ 0, 1∗ satisfies
|tk| < p(n), in which p is some polynomial. Each tk is called the trapdoor
corresponding to k. Each trapdoor can be efficiently sampled.

• Given input k, there also exists a PPT algorithm that outputs x ∈ Dk.
That is, each Dk can be efficiently sampled.

• For any k ∈ K, there exists a PPT algorith that correctly computes fk.

• For any k ∈ K, there exists a PPT algorithm A such that for any x ∈ Dk,
let y = A ∗ k, fk(x), tk), and then we have fk(y) = fk(x). That is, given
trapdoor, it is easy to invert.

• For any k ∈ K, without trapdoor tk, for any PPT algorithm, the probability
to correctly invert fk is negligible.

Definition. The fundamental theorem of arithmetic, also called unique-prime-
factorization-theorem, states that every integer greater than 1 is either a prime
number or can be represented as the unique product of primes up to reordering.

Example 2

The RSA algorithm [15] is named after Ron Rivest, Adi Shamir and Len Adle-
man who invented it in 1977. It relies on a public key and requires no shared
secret to encrypt a message to send to a recipient who can then use their private
key to decrypt the cypher text to plain text. The key generation algorithm is
as follows:
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• Generate two large primes, p and q, of approximately equal size such that
their product n = pq is of the required lenth, e.g. 1024 bits.

• Compute n = pq and φ = (p− 1)(q − 1).

• Choose an integer e, 1 < e < φ, such that gcd(e, φ) = 1

• Compute the secret exponent d, 1 < d < φ, such that ed ≡ 1mod φ.

• The public key is (n, e) and the private key is (d, p, q). Keep all the values
d, p, q, φ secret.

n is known as the modulus. e is known as the public exponent and d is known
as the secret exponent.

Sender A does the following:

• Obtains the recipient B’s public key (n, e).

• Represent the plaintext message as a positive integer m with 1 < m < n.

• Compute the ciphertext c = me mod n.

• Sends the ciphertext c to B.

Recipient B does the following:

• Uses his private key (n, d) to compute m = cd mod n.

• Extracts the plaintext from the message representative m.

Example 3

Diffie-Hellman key exchange establishes a shared secret between two parties that
is used for secret communication over an insecure communications channel. The
original implementation of the protocol uses the multiplicative group of integers
G modulo p where p is a prime and g ∈ G is a primitive root module p. Any
choice of value from 1 to p − 1 is valid for non secret values. In the following
algorithm, only a, b and s are secrets.

• Alice and Bob publicly agree to use modulus p = 23 and base g = 5.

• Alice chooses a secret integer a = 4, then sends Bob A = ga mod p.

A = 54 mod 23 = 4

• Bob chooses a secret integer b = 3, then sends Alice B = gb mod p.

B = 53 mod 23 = 10

• Alice computes s = B1 mod p.

s = 104 mod 23 = 18
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• Bob computes s = Ab mod p.

s = 43 mod 23 = 18

• Alice and Bob now share a secret (the number 18).

Figure 4: Diffie-Hellman key ex-
change.
[1]

Both Alice and Bob have arrived at the
same values under mod p,

Abmodp = gabmodp = gbamodp = Bamodp

More specifically,

(ga mod p)b mod p = (gb mod p)a mod p

Even if p is 600 digits, modern classical algo-
rithm struggles to figure out the secret. This
is due to the discrete logarithm problem.[6]

Example 4

A lot of cryptography systems rely on the fact
that prime factorization is a generally hard
problem and that there is no known classi-
cal algorithm for it not including brute force
methods. Tjat said, factoring is not the hard-
est problem on a bit for bit basis. Special-
ized algorithms like Quadratic Sieve and the
General Number Field Sieve were created to
tackle the problem of prime factorization and
has been moderately successful. These factor-
ing algorithm get more efficient as the size of
the number being factored get larger.

As such, research explored other mathematics-based cryptographic solutions
looking for algorithm beyond factoring that would serve as a good Trapdoor
function. In 1985, cryptographic algorithms were purposed based on an eso-
teric branch of mathematics called elliptic curve. For example, if the domain
of elliptic curve over real place R2 is restricted to integers, the necessary re-
quirement for RSA is met. Or if you take elliptic curves over finite field, you
get finite elliptic group and you get finite elliptic curve cryptography based on
the discrete logarithm on that group. This would give an elliptic Diffie-Hellman
cryptography.

The elliptic curve discrete logarithm is the hard problem underpinning ellip-
tic curve cryptography. Despite almost three decades of research, mathemati-
cians still haven’t found an algorithm to solve this problem beyond the naive
approach.

Probably the most famous use case of this system is the Tor project. But
it also appears in digital signature verification and even proof of ownership for
Bitcoins. [21]
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Example 5

Homomorphic Encryption (HE) refers to a special type of encryption technique
that allows for computation to be done on encrypted data, without requiring ac-
cess to a secret (decryption) key. The results of the computations are encrypted
and can be revealed only by the owner of the secret key.[4]

The idea is that there is a group homomorphism between plain text and
cypher-text so that you can work with the cypher-text group directly.

If the RSA public has modulus n and encryption exponent e, then the encryp-
tion of a message m given by φ(m) = me mod n. The homomorphic property
is then:

φ(m1) ◦ φ(m2) = me
1m

e
2 mod n

= (m1m2)e mod n

= φ(m1 ◦m2)

This is sometimes called unpaded RSA. [8]

Quantum Computers and Cryptography

In 1994, an American mathematician named Peter Shore came up with an algo-
rithm for then mostly theoretical quantum computers that has been reshaping
cryptography. Shor’s algorithm is a polynomial-time quantum computer al-
gorithm for integer factorization. Informally, it solves the following problem:
Given an integer N , find it’s prime factorization. This number N can be factor
in O((logN)3) time and O(logN) space.[3]

The algorithm is significant because it implies that public key cryptography
might be easily broken, given a sufficiently large quantum computer. RSA, for
example, uses a public key N which is the product of two large prime numbers.
Like all quantum algorithm, Shor’s algorithm is probabilistic: it gives the correct
answer with high probability, and the probability of faliusre can be decreased
by repeating the algorithm.

Shor’s algorithm was demonstrated in 2001 by a group at IBM, which fac-
tored 15 into 3 and 5, using a quantum computer with 7 qbits.

Shor’s algorithm consists of two parts:

• A reduction of the factoring problem to the problem of order-finding,
which can be done on a classical computer.

• A quantum algorithm to solve the order finding problem.

The algorithm and the proof for it can be found here.shor and also on Wikipedia.
Shor is not the only algorithm out there that might break some crypto-

systems either. Grover’s algorithm is another such algorithm that can attack a
crypto-system in a different way. Grover’s algorithm could brute-force a 128−bit
symmetric cryptography key in roughly 264 iterations.[7]
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Suppose you have a function f : 0, 1n → 0, 1n and x ∈ 0, 1n and we are
looking for a y such that f(y) = x. On a classical computer, unless we know
something special about f , we need to iterate over all possible inputs to find
such a y such that f(y) = x. So, if N = |0, 1n, on a classical computer, you
need to do O(N) operations. On the other hand, if out f is given as a quantum
circuit and we can run our code on a quantum computer, we only need O(

√
(N))

operations to find such a y.
For example, supposed we have a known plaintext problem where we have a

message P , and encrypted message S and we are looking for a key K such that
f(P,K) = S. On a classical computer, a brute force algorithm requires O(N)
steps where N is the size of the key space. While on a quantum computer, you
only need O(N1/2) steps. So if you use AES with 128-bit key, Grover’s algorithm
can break it in O(264) steps so we only get half as many bits of security as we
thought we had.

But it’s not all bad news when it comes to quantum computer. Quantum
mechanics (namely Quantum Field Theory) itself can be used to produce cryp-
tographic systems. Quantum key distribution (QKD) uses a series of photons
(light particles) to transmit data from one location to another over a fiber op-
tic cable. By comparing measurements of the properties of a fraction of these
photons, the two endpoints can determine what the key is and if it is safe to
use.

• The sender transmits photons through a filter (or polarize) which ran-
domly gives them one of four possible polarizations and bit designations:
Vertical(One bit), Horizontal(Zero bit), 45 degree right(One bit), or 45
degree left(Zero bit).

• The photons travel to a receiver, which uses two beam splitters (horizon-
tal/vertical and diagonal) to ”read” the polarization of each photon. The
receiver does not know which beam splitter to use for each photon and
has to guess which one to use.

• Once the stream of photon has been sent, the receiver tell the sender which
splitter was used for each of the photons in the sequence they were sent,
and the sender compares that information with the sequence of polarizers
used to send the key. The photons that were read using the wrong beam
splitter are discarded, and the resulting sequence of bits becomes the key.

If the photon is read or copied in a way by an eavesdroppr, the photon’s
state will change. The change will be detected by the endpoints. In other
words, this means you cannot read the photon and forward it on or make a
copy of it without being detected.[5]

Conclusion
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